6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Semiconducting polymer nano-PROTACs for activatable photo-immunometabolic cancer therapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immunometabolic intervention has been applied to treat cancer via inhibition of certain enzymes associated with intratumoral metabolism. However, small-molecule inhibitors and genetic modification often suffer from insufficiency and off-target side effects. Proteolysis targeting chimeras (PROTACs) provide an alternative way to modulate protein homeostasis for cancer therapy; however, the always-on bioactivity of existing PROTACs potentially leads to uncontrollable protein degradation at non-target sites, limiting their in vivo therapeutic efficacy. We herein report a semiconducting polymer nano-PROTAC (SPN pro) with phototherapeutic and activatable protein degradation abilities for photo-immunometabolic cancer therapy. SPN pro can remotely generate singlet oxygen ( 1O 2) under NIR photoirradiation to eradicate tumor cells and induce immunogenic cell death (ICD) to enhance tumor immunogenicity. Moreover, the PROTAC function of SPN pro is specifically activated by a cancer biomarker (cathepsin B) to trigger targeted proteolysis of immunosuppressive indoleamine 2,3-dioxygenase (IDO) in the tumor of living mice. The persistent IDO degradation blocks tryptophan (Trp)-catabolism program and promotes the activation of effector T cells. Such a SPNpro-mediated in-situ immunometabolic intervention synergizes immunogenic phototherapy to boost the antitumor T-cell immunity, effectively inhibiting tumor growth and metastasis. Thus, this study provides a polymer platform to advance PROTAC in cancer therapy.

          Abstract

          Proteolysis targeting chimeras (PROTACs) is an effective alternative to modulate protein homeostasis but can lead to uncontrollable protein degradation and off-target side effects. Here, the authors developed semiconducting polymer nano-PROTACs with phototherapeutic and activatable protein degradation abilities for photo-immunometabolic cancer therapy.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          A guide to immunometabolism for immunologists.

          In recent years a substantial number of findings have been made in the area of immunometabolism, by which we mean the changes in intracellular metabolic pathways in immune cells that alter their function. Here, we provide a brief refresher course on six of the major metabolic pathways involved (specifically, glycolysis, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway, fatty acid oxidation, fatty acid synthesis and amino acid metabolism), giving specific examples of how precise changes in the metabolites of these pathways shape the immune cell response. What is emerging is a complex interplay between metabolic reprogramming and immunity, which is providing an extra dimension to our understanding of the immune system in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immunogenic cell death and DAMPs in cancer therapy.

            Although it was thought that apoptotic cells, when rapidly phagocytosed, underwent a silent death that did not trigger an immune response, in recent years a new concept of immunogenic cell death (ICD) has emerged. The immunogenic characteristics of ICD are mainly mediated by damage-associated molecular patterns (DAMPs), which include surface-exposed calreticulin (CRT), secreted ATP and released high mobility group protein B1 (HMGB1). Most DAMPs can be recognized by pattern recognition receptors (PRRs). In this Review, we discuss the role of endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) in regulating the immunogenicity of dying cancer cells and the effect of therapy-resistant cancer microevolution on ICD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer immunotherapy comes of age.

              Activating the immune system for therapeutic benefit in cancer has long been a goal in immunology and oncology. After decades of disappointment, the tide has finally changed due to the success of recent proof-of-concept clinical trials. Most notable has been the ability of the anti-CTLA4 antibody, ipilimumab, to achieve a significant increase in survival for patients with metastatic melanoma, for which conventional therapies have failed. In the context of advances in the understanding of how tolerance, immunity and immunosuppression regulate antitumour immune responses together with the advent of targeted therapies, these successes suggest that active immunotherapy represents a path to obtain a durable and long-lasting response in cancer patients.
                Bookmark

                Author and article information

                Contributors
                kypu@ntu.edu.sg
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                18 May 2021
                18 May 2021
                2021
                : 12
                : 2934
                Affiliations
                [1 ]GRID grid.59025.3b, ISNI 0000 0001 2224 0361, School of Chemical and Biomedical Engineering, , Nanyang Technological University, ; Singapore, Singapore
                [2 ]GRID grid.59025.3b, ISNI 0000 0001 2224 0361, Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, , Nanyang Technological University, ; Singapore, Singapore
                Author information
                http://orcid.org/0000-0002-2341-3129
                http://orcid.org/0000-0002-8064-6009
                Article
                23194
                10.1038/s41467-021-23194-w
                8131624
                34006860
                d424accd-7459-4584-b968-70fbf2f8ea65
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 8 July 2020
                : 20 April 2021
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                cancer immunotherapy,nanotechnology in cancer
                Uncategorized
                cancer immunotherapy, nanotechnology in cancer

                Comments

                Comment on this article