8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Interethnic and Intraethnic Variability of CYP2C8 and CYP2C9 Polymorphisms in Healthy Individuals

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications.

          The cytochrome P450 CYP2C9 is responsible for the metabolism of S-warfarin. Two known allelic variants CYP2C9*2 and CYP2C9*3 differ from the wild type CYP2C9*1 by a single aminoacid substitution in each case. The allelic variants are associated with impaired hydroxylation of S-warfarin in in-vitro expression systems. We have studied the effect of CYP2C9 polymorphism on the in-vivo warfarin dose requirement. Patients with a daily warfarin dose requirement of 1.5 mg or less (low-dose group, n=36), randomly selected patients with a wide range of dose requirements from an anticoagulant clinic in north-east England (clinic control group, n=52), and 100 healthy controls from the community in the same region were studied. Genotyping for the CYP2C9*2 and CYP2C9*3 alleles was done by PCR analysis. Case notes were reviewed to assess the difficulties encountered during the induction of warfarin therapy and bleeding complications in the low-dose and clinic control groups. The odds ratio for individuals with a low warfarin dose requirement having one or more CYP2C9 variant alleles compared with the normal population was 6.21 (95% CI 2.48-15.6). Patients in the low-dose group were more likely to have difficulties at the time of induction of warfarin therapy (5.97 [2.26-15.82]) and have increased risk of major bleeding complications (rate ratio 3.68 [1.43-9.50]) when compared with randomly selected clinic controls. We have shown that there is a strong association between CYP2C9 variant alleles and low warfarin dose requirement. CYP2C9 genotyping may identify a subgroup of patients who have difficulty at induction of warfarin therapy and are potentially at a higher risk of bleeding complications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy.

            Warfarin is a commonly used anticoagulant that requires careful clinical management to balance the risks of overanticoagulation and bleeding with those of underanticoagulation and clotting. The principal enzyme involved in warfarin metabolism is CYP2C9, and 2 relatively common variant forms with reduced activity have been identified, CYP2C9*2 and CYP2C9*3. Patients with these genetic variants have been shown to require lower maintenance doses of warfarin, but a direct association between CYP2C9 genotype and anticoagulation status or bleeding risk has not been established. To determine if CYP2C9*2 and CYP2C9*3 variants are associated with overanticoagulation and bleeding events during warfarin therapy. Retrospective cohort study conducted at 2 anticoagulation clinics based in Seattle, Wash. Two hundred patients receiving long-term warfarin therapy for various indications during April 3, 1990, to May 31, 2001. Only patients with a complete history of warfarin exposure were included. Anticoagulation status, measured by time to therapeutic international normalized ratio (INR), rate of above-range INRs, and time to stable warfarin dosing; and time to serious or life-threatening bleeding events. Among 185 patients with analyzable data, 58 (31.4%) had at least 1 variant CYP2C9 allele and 127 (68.6%) had the wild-type (*1/*1) genotype. Mean maintenance dose varied significantly among the 6 genotype groups (*1/*1 [n = 127], *1/*2 [n = 28], *1/*3 [n = 18], *2/*2 [n = 4], *2/*3 [n = 3], *3/*3 [n = 5]) (by Kruskall-Wallis test, chi(2)(5) = 37.348; P<.001). Compared with patients with the wild-type genotype, patients with at least 1 variant allele had an increased risk of above-range INRs (hazard ratio [HR], 1.40; 95% confidence interval [CI], 1.03-1.90). The variant group also required more time to achieve stable dosing (HR, 0.65; 95% CI, 0.45-0.94), with a median difference of 95 days (P =.004). In addition, although numbers were small for some genotypes, representing potentially unstable estimates, patients with a variant genotype had a significantly increased risk of a serious or life-threatening bleeding event (HR, 2.39; 95% CI, 1.18-4.86). The results of our study suggest that the CYP2C9*2 and CYP2C9*3 polymorphisms are associated with an increased risk of overanticoagulation and of bleeding events among patients in a warfarin anticoagulation clinic setting, although small numbers in some cases would suggest the need for caution in interpretation. Screening for CYP2C9 variants may allow clinicians to develop dosing protocols and surveillance techniques to reduce the risk of adverse drug reactions in patients receiving warfarin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future.

              The field of cytochrome P450 pharmacogenetics has progressed rapidly during the past 25 years. All the major human drug-metabolizing P450 enzymes have been identified and cloned, and the major gene variants that cause inter-individual variability in drug response and are related to adverse drug reactions have been identified. This information now provides the basis for the use of predictive pharmacogenetics to yield drug therapies that are more efficient and safer. Today, we understand which drugs warrant dosing based on pharmacogenetics to improve drug treatment. It is anticipated that, in the future, genotyping could be used to personalize drug treatment for vast numbers of subjects, decreasing the cost of drug treatment and increasing the efficacy of drugs and health in general. I estimate that such personalized P450 gene-based treatment would be relevant for 10-20% of all drug therapy.
                Bookmark

                Author and article information

                Journal
                Molecular Diagnosis & Therapy
                Mol Diag Ther
                Springer Nature
                1177-1062
                1179-2000
                January 2006
                August 2012
                : 10
                : 1
                : 29-40
                Article
                10.1007/BF03256440
                16646575
                d4153e1b-b6b7-4aee-89c0-366ddbc634c7
                © 2006
                History

                Comments

                Comment on this article