20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome mining reveals the genus Xanthomonas to be a promising reservoir for new bioactive non-ribosomally synthesized peptides

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Various bacteria can use non-ribosomal peptide synthesis (NRPS) to produce peptides or other small molecules. Conserved features within the NRPS machinery allow the type, and sometimes even the structure, of the synthesized polypeptide to be predicted. Thus, bacterial genome mining via in silico analyses of NRPS genes offers an attractive opportunity to uncover new bioactive non-ribosomally synthesized peptides. Xanthomonas is a large genus of Gram-negative bacteria that cause disease in hundreds of plant species. To date, the only known small molecule synthesized by NRPS in this genus is albicidin produced by Xanthomonas albilineans. This study aims to estimate the biosynthetic potential of Xanthomonas spp. by in silico analyses of NRPS genes with unknown function recently identified in the sequenced genomes of X. albilineans and related species of Xanthomonas.

          Results

          We performed in silico analyses of NRPS genes present in all published genome sequences of Xanthomonas spp., as well as in unpublished draft genome sequences of Xanthomonas oryzae pv . oryzae strain BAI3 and Xanthomonas spp. strain XaS3. These two latter strains, together with X. albilineans strain GPE PC73 and X. oryzae pv. oryzae strains X8-1A and X11-5A, possess novel NRPS gene clusters and share related NRPS-associated genes such as those required for the biosynthesis of non-proteinogenic amino acids or the secretion of peptides. In silico prediction of peptide structures according to NRPS architecture suggests eight different peptides, each specific to its producing strain. Interestingly, these eight peptides cannot be assigned to any known gene cluster or related to known compounds from natural product databases. PCR screening of a collection of 94 plant pathogenic bacteria indicates that these novel NRPS gene clusters are specific to the genus Xanthomonas and are also present in Xanthomonas translucens and X. oryzae pv. oryzicola. Further genome mining revealed other novel NRPS genes specific to X. oryzae pv. oryzicola or Xanthomonas sacchari.

          Conclusions

          This study revealed the significant potential of the genus Xanthomonas to produce new non-ribosomally synthesized peptides. Interestingly, this biosynthetic potential seems to be specific to strains of Xanthomonas associated with monocotyledonous plants, suggesting a putative involvement of non-ribosomally synthesized peptides in plant-bacteria interactions.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Biosynthesis of nonribosomal peptides1.

          Bacteria and fungi use large multifunctional enzymes, the so-called nonribosomal peptide synthetases (NRPSs), to produce peptides of broad structural and biological activity. Biochemical studies have contributed substantially to the understanding of the key principles of these modular enzymes that can draw on a much larger number of catalytic tools for the incorporation of unusual features compared with the ribosomal system. Several crystal structures of NRPS-domains have yielded deep insight into the catalytic mechanisms involved and have led to a better prediction of the products assembled and to the construction of hybrid enzymes. In addition to the structure-function relationship of the core- and tailoring-domains of NRPSs, which is the main focus of this review, different biosynthetic strategies and essential enzymes for posttranslational modification and editing are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia.

            Leguminous plants (such as peas and soybeans) and rhizobial soil bacteria are symbiotic partners that communicate through molecular signaling pathways, resulting in the formation of nodules on legume roots and occasionally stems that house nitrogen-fixing bacteria. Nodule formation has been assumed to be exclusively initiated by the binding of bacterial, host-specific lipochito-oligosaccharidic Nod factors, encoded by the nodABC genes, to kinase-like receptors of the plant. Here we show by complete genome sequencing of two symbiotic, photosynthetic, Bradyrhizobium strains, BTAi1 and ORS278, that canonical nodABC genes and typical lipochito-oligosaccharidic Nod factors are not required for symbiosis in some legumes. Mutational analyses indicated that these unique rhizobia use an alternative pathway to initiate symbioses, where a purine derivative may play a key role in triggering nodule formation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Reclassification of Xanthomonas

                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2013
                27 September 2013
                : 14
                : 658
                Affiliations
                [1 ]CIRAD, UMR BGPI, Montpellier Cedex 5, F-34398, France
                [2 ]IRD, UMR RPB, Montpellier Cedex F-34394, France
                [3 ]CEA/DSV/IG/Genoscope, Centre National de Séquençage, Evry Cedex F-91057, France
                [4 ]INRA, UMR IRHS, Beaucouzé F-49071, France
                [5 ]INRA, UMR LIPM, Castanet-Tolosan Cedex F-31326, France
                [6 ]Institut für Chemie, Technische Universität Berlin, Berlin D-10623, Germany
                [7 ]UMR PVBMT, Université de la Réunion, Saint-Denis, La Réunion F-97715, France
                Article
                1471-2164-14-658
                10.1186/1471-2164-14-658
                3849588
                24069909
                d3dc5a8f-c4ff-4ecb-92db-abb1a7a0bc58
                Copyright © 2013 Royer et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 January 2012
                : 22 September 2013
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article