1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of Epileptic Spiking Associated With Brain Amyloidosis in APP/PS1 Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epileptic activity without visible convulsions is common in Alzheimer's disease (AD) and may contribute adversely to the disease progress and symptoms. Transgenic mice with amyloid plaque pathology also display epileptic seizures, but those are too infrequent to assess the effect of anti-epileptic treatments. Besides spontaneous seizures, these mice also display frequent epileptic spiking in epidural EEG recordings, and these have provided a means to test potential drug treatment to AD-related epilepsy. However, the origin of EEG spikes in transgenic AD model mice has remained elusive, which makes it difficult to relate electrophysiology with underlying pathology at the cellular and molecular level. Using multiple cortical and subcortical electrodes in freely moving APP/PS1 transgenic mice and their wild-type littermates, we identified several types of epileptic spikes among over 15 800 spikes visible with cortical screw electrodes based on their source localization. Cortical spikes associated with muscle twitches, cortico-hippocampal spikes, and spindle and fast-spindle associated spikes were present equally often in both APP/PS1 and wild-type mice, whereas pure cortical spikes were slightly more common in APP/PS1 mice. In contrast, spike-wave discharges, cortico-hippocampal spikes with after hyperpolarization and giant spikes were seen almost exclusively in APP/PS1 mice but only in a subset of them. Interestingly, different subtypes of spikes responded differently to anti-epileptic drugs ethosuximide and levetiracetam. From the translational point most relevant may be the giant spikes generated in the hippocampus that reached an amplitude up to ± 5 mV in the hippocampal channel. As in AD patients, they occurred exclusively during sleep. Further, we could demonstrate that a high number of giant spikes in APP/PS1 mice predicts seizures. These data show that by only adding a pair of hippocampal deep electrodes and EMG to routine cortical epidural screw electrodes and by taking into account underlying cortical oscillations, one can drastically refine the analysis of cortical spike data. This new approach provides a powerful tool to preclinical testing of potential new treatment options for AD related epilepsy.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Silent Hippocampal Seizures and Spikes Identified by Foramen Ovale Electrodes in Alzheimer’s Disease

          We directly assessed mesial temporal activity in two Alzheimer’s disease (AD) patients without a history or EEG evidence of seizures, using intracranial foramen ovale electrodes. We detected clinically silent hippocampal seizures and epileptiform spikes during sleep, a period when both were most likely to interfere with memory consolidation. These index cases support a model in which early development of occult hippocampal hyperexcitability may contribute to the pathogenesis of AD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interictal spikes and epileptic seizures: their relationship and underlying rhythmicity.

            We report on a quantitative analysis of electrocorticography data from a study that acquired continuous ambulatory recordings in humans over extended periods of time. The objectives were to examine patterns of seizures and spontaneous interictal spikes, their relationship to each other, and the nature of periodic variation. The recorded data were originally acquired for the purpose of seizure prediction, and were subsequently analysed in further detail. A detection algorithm identified potential seizure activity and a template matched filter was used to locate spikes. Seizure events were confirmed manually and classified as either clinically correlated, electroencephalographically identical but not clinically correlated, or subclinical. We found that spike rate was significantly altered prior to seizure in 9 out of 15 subjects. Increased pre-ictal spike rate was linked to improved predictability; however, spike rate was also shown to decrease before seizure (in 6 out of the 9 subjects). The probability distribution of spikes and seizures were notably similar, i.e. at times of high seizure likelihood the probability of epileptic spiking also increased. Both spikes and seizures showed clear evidence of circadian regulation and, for some subjects, there were also longer term patterns visible over weeks to months. Patterns of spike and seizure occurrence were highly subject-specific. The pre-ictal decrease in spike rate is not consistent with spikes promoting seizures. However, the fact that spikes and seizures demonstrate similar probability distributions suggests they are not wholly independent processes. It is possible spikes actively inhibit seizures, or that a decreased spike rate is a secondary symptom of the brain approaching seizure. If spike rate is modulated by common regulatory factors as seizures then spikes may be useful biomarkers of cortical excitability.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy

              Interactions between the hippocampus and cortex are critical for memory. Interictal epileptiform discharges (IEDs) identify epileptic brain regions and can impair memory, but how they interact with physiological patterns of network activity is mostly undefined. We show in a rat model of temporal lobe epilepsy that spontaneous hippocampal IEDs correlate with impaired memory consolidation and are precisely coordinated with spindle oscillations in the prefrontal cortex during NREM sleep. This coordination surpasses the normal physiological ripple-spindle coupling and is accompanied by decreased ripple occurrence. IEDs also induce spindles during REM sleep and wakefulness, behavioral states that do not naturally express these oscillations, by generating a cortical ‘DOWN’ state. We confirm a similar correlation of temporofrontal IEDs with spindles over anatomically restricted cortical regions in a pilot clinical examination of four subjects with focal epilepsy. These findings imply that IEDs may impair memory via misappropriation of physiological mechanisms for hippocampal-cortical coupling, suggesting a target to treat memory impairment in epilepsy.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                12 November 2019
                2019
                : 10
                : 1151
                Affiliations
                [1] 1A.I. Virtanen Institute, University of Eastern Finland , Kuopio, Finland
                [2] 2Academy of Biology and Biotechnology, Southern Federal University , Rostov-on-Don, Russia
                [3] 3Department of Psychology, University of Jyväskylä , Jyväskylä, Finland
                Author notes

                Edited by: Elissaios Karageorgiou, Independent Researcher, Greece

                Reviewed by: Antonio Giuliano Zippo, National Research Council, Italy; Tristan Shuman, Independent Researcher, New York, NY, United States

                *Correspondence: Heikki Tanila heikki.tanila@ 123456uef.fi

                This article was submitted to Dementia, a section of the journal Frontiers in Neurology

                †These authors have contributed equally to this work

                Article
                10.3389/fneur.2019.01151
                6861424
                31781019
                d3c48eff-9f26-49ca-ae1f-04c36f94af6a
                Copyright © 2019 Gureviciene, Ishchenko, Ziyatdinova, Jin, Lipponen, Gurevicius and Tanila.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 May 2019
                : 14 October 2019
                Page count
                Figures: 13, Tables: 3, Equations: 0, References: 44, Pages: 22, Words: 13166
                Categories
                Neurology
                Original Research

                Neurology
                alzheimer's disease,amyloid - beta- protein,transgenic,eeg,sleep,epilepsy,cortex,hippocampus
                Neurology
                alzheimer's disease, amyloid - beta- protein, transgenic, eeg, sleep, epilepsy, cortex, hippocampus

                Comments

                Comment on this article