35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MiR-208a-3p functions as an oncogene in colorectal cancer by targeting PDCD4

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accumulating evidences have shown microRNAs (miRNAs) play important roles in the progression of human cancers including colorectal cancer (CRC). However, the biological function and molecular mechanism of miRNAs in CRC still remains to be further investigated. Using microarray, we found and confirmed that miR-208a-3p was up-regulated in CRC tissues. Its high expression was statistically associated with distant metastasis and TNM stage. Functional assays revealed inhibition of miR-208a-3p suppressed proliferation, invasion and migration, and induced cell apoptosis of CRC cells. Moreover, we identified programmed cell death protein 4 (PDCD4), a well-known tumor suppressor, is a direct target of miR-208a-3p. We also found that overexpression of PDCD4 suppressed cell proliferation, invasion, and migration. Importantly, silencing of PDCD4 efficiently abrogated the promoting effects on CRC cells proliferation, invasion, and migration caused by inhibition of miR-208a-3p. Our findings confirmed the oncogenic role of miR-208a-3p via targeting PDCD4 in CRC, identifying miR-208a-3p as a potential diagnosis and therapeutic biomarker for CRC.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Lost in transcription: p21 repression, mechanisms, and consequences.

          The cyclin-dependent kinase inhibitor p21WAF1/CIP1 is a major player in cell cycle control and it is mainly regulated at the transcriptional level. Whereas induction of p21 predominantly leads to cell cycle arrest, repression of p21 may have a variety of outcomes depending on the context. In this review, we concentrate on transcriptional repression of p21 by cellular and viral factors, and delve in detail into its possible biological implications and its role in cancer. It seems that the major mode of p21 transcriptional repression by negative regulators is the interference with positive transcription factors without direct binding to the p21 promoter. Specifically, the negative factors may either inhibit binding of positive regulators to the promoter or hinder their transcriptional activity. The ability of p21 to inhibit proliferation may contribute to its tumor suppressor function. Because of this, it is not surprising that a number of oncogenes repress p21 to promote cell growth and tumorigenesis. However, p21 is also an inhibitor of apoptosis and p21 repression may also have an anticancer effect. For example, c-Myc and chemical p21 inhibitors, which repress p21, sensitize tumor cells to apoptosis by anticancer drugs. Further identification of factors that repress p21 is likely to contribute to the better understanding of its role in cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNA-21 promotes cell proliferation and down-regulates the expression of programmed cell death 4 (PDCD4) in HeLa cervical carcinoma cells.

            MicroRNAs are involved in cancer-related processes. The microRNA-21(miR-21) has been identified as the only miRNA over-expressed in a wide variety of cancers, including cervical cancer. However, the function of miR-21 is unknown in cervical carcinomas. In this study, we found that the inhibition of miR-21 in HeLa cervical cancer cells caused profound suppression of cell proliferation, and up-regulated the expression of the tumor suppressor gene PDCD4. We also provide direct evidence that PDCD4-3'UTR is a functional target of miR-21 and that the 18bp putative target site can function as the sole regulatory element in HeLa cells. These results suggest that miR-21 may play an oncogenic role in the cellular processes of cervical cancer and may serve as a target for effective therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Involvement of programmed cell death 4 in transforming growth factor-beta1-induced apoptosis in human hepatocellular carcinoma.

              The programmed cell death 4 (PDCD4) gene was originally identified as a tumor-related gene in humans and acts as a tumor-suppressor in mouse epidermal carcinoma cells. However, its function and regulatory mechanisms of expression in human cancer remain to be elucidated. We therefore investigated the expression of PDCD4 in human hepatocellular carcinoma (HCC) and the role of PDCD4 in human HCC cells. Downregulation of PDCD4 protein was observed in all HCC tissues tested compared with corresponding noncancerous liver, as revealed by Western blotting or immunohistochemical staining. Human HCC cell line, Huh7, transfected with PDCD4 cDNA showed nuclear fragmentation and DNA laddering characteristic of apoptotic cells associated with mitochondrial changes and caspase activation. Transforming growth factor-beta1 (TGF-beta1) treatment of Huh7 cells resulted in increased PDCD4 expression and occurrence of apoptosis, also concomitant with mitochondrial events and caspase activation. Transfection of Smad7, a known antagonist to TGF-beta1 signaling, protected cells from TGF-beta1-mediated apoptosis and suppressed TGF-beta1-induced PDCD4 expression. Moreover, antisense PDCD4 transfectants were resistant to apoptosis induced by TGF-beta1. In conclusion, these data suggest that PDCD4 is a proapoptotic molecule involved in TGF-beta1-induced apoptosis in human HCC cells, and a possible tumor suppressor in hepatocarcinogenesis.
                Bookmark

                Author and article information

                Journal
                Biosci Rep
                Biosci. Rep
                ppbioscirep
                BSR
                Bioscience Reports
                Portland Press Ltd.
                0144-8463
                1573-4935
                25 March 2019
                30 April 2019
                16 April 2019
                : 39
                : 4
                : BSR20181598
                Affiliations
                [1 ]Department of Nephrology, First Affiliated Hospital of Jiaxing University, Jiaxing,China
                [2 ]Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215200, Jiangsu, China
                [3 ]Department of Critical Care Medicine, Suzhou Municipal Hospital, Suzhou 215200, Jiangsu, China
                Author notes
                Correspondence: Chunfang Xu ( chunfangxucf@ 123456163.com )
                Author information
                http://orcid.org/0000-0002-4581-5495
                Article
                10.1042/BSR20181598
                6465200
                30914452
                d3b25325-b4eb-4202-8059-4057f267b4f0
                © 2019 The Author(s).

                This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

                History
                : 11 September 2018
                : 08 January 2019
                : 18 January 2019
                Page count
                Pages: 12
                Categories
                Research Articles
                Research Article
                25
                21
                39
                10

                Life sciences
                colorectal cancer,micrrna-208-3p,pdcd4
                Life sciences
                colorectal cancer, micrrna-208-3p, pdcd4

                Comments

                Comment on this article