22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ethanol extract of Fructus Ligustri Lucidi increases circulating 1,25-dihydroxyvitamin D3 by inducing renal 25-hydroxyvitamin D-1α hydroxylase activity.

      Menopause (New York, N.y.)
      25-Hydroxyvitamin D3 1-alpha-Hydroxylase, drug effects, metabolism, Analysis of Variance, Animals, Calcitriol, biosynthesis, blood, Cells, Cultured, Drugs, Chinese Herbal, pharmacology, Female, Kidney Tubules, Proximal, enzymology, Ligustrum, Ovariectomy, Plant Extracts, RNA, Messenger, Rats, Rats, Sprague-Dawley, Receptors, Calcitriol, Reverse Transcriptase Polymerase Chain Reaction

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present study was designed to determine whether Fructus Ligustri Lucidi (FLL) ethanol extract can directly regulate vitamin D metabolism both in vivo and in vitro. Eleven-month-old, aged Sprague-Dawley sham-operated and ovariectomized (OVX) female rats were fed a normal-calcium (Ca) diet (0.6% Ca, 0.65% phosphorus) and received either FLL (700 mg/kg) or vehicle daily for 12 weeks. The in vitro effects of FLL on vitamin D metabolism were studied using primary cultures of the rat renal proximal tubules. mRNA and protein expressions of 25-hydroxyvitamin D-1α hydroxylase (1-OHase) and vitamin D receptor (VDR) in the kidney and proximal tubule were measured using real-time polymerase chain reaction and Western blotting, respectively. The concentrations of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) synthesized by renal 1-OHase were measured by a competitive enzyme immunoassay. FLL treatment significantly increased serum 1,25(OH)2D3 levels in both sham (P < 0.01) and OVX (P < 0.05) rats. FLL increased renal 1-OHase and VDR protein and mRNA expressions in sham rats. Protein expression of renal 1-OHase, but not VDR, was also up-regulated in OVX rats during FLL treatment. 1-OHase mRNA and 1-OHase activity were increased by FLL treatment in primary cultures of renal proximal tubule cells. FLL could increase the circulating levels of 1,25(OH)2D3 in vivo in aged female rats by directly stimulating 1-OHase activity. Thus, it might be an ideal oral agent that can help to improve the ability to induce 1,25(OH)2D3 synthesis and Ca balance in postmenopausal women who are of high risk of developing osteoporosis.

          Related collections

          Author and article information

          Comments

          Comment on this article