16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      On the Role of Neutrinos Telescopes in the Search for Dark Matter Annihilations in the Sun

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The observation of GeV neutrinos coming from the Sun would be an unmistakable signal of dark matter. Current neutrino detectors have so far failed to detect such a signal, however, and bounds from direct and indirect dark matter searches may significantly restrict the possibility of observing it in future experiments such as Hyper-Kamiokande or IceCube-Gen2. In this work, we assess in the light of current data and of expected experimental sensitivities, the prospects for the detection of a neutrino signal from dark matter annihilations in the Sun. To be as general as possible, equilibrium between the capture and the annihilation rates in the Sun is not assumed in our analysis; instead, the dark matter scattering and annihilation cross sections are taken as free and independent parameters. We consider capture via both spin-dependent and spin-independent interactions, and annihilations into three representative final states: \(b\bar b\), \(W^+W^-\), and \(\tau^+\tau^-\). We find that when the capture in the Sun is dominated by spin-independent interactions, current direct detection bounds already preclude the observation of a neutrino signal in future experiments. For capture via spin-dependent interactions, a strong complementarity is observed, over most of the parameter space, between future neutrino detectors and planned direct and indirect dark matter detection experiments, such as PICO-500 and CTA. In this case, we also identify some regions of the parameter space that can be probed, via the neutrino flux from the Sun, only by future neutrino experiments.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Particle Dark Matter: Evidence, Candidates and Constraints

          In this review article, we discuss the current status of particle dark matter, including experimental evidence and theoretical motivations. We discuss a wide array of candidates for particle dark matter, but focus on neutralinos in models of supersymmetry and Kaluza-Klein dark matter in models of universal extra dimensions. We devote much of our attention to direct and indirect detection techniques, the constraints placed by these experiments and the reach of future experimental efforts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Evidence for dark matter in the inner Milky Way

            The ubiquitous presence of dark matter in the universe is today a central tenet in modern cosmology and astrophysics. Ranging from the smallest galaxies to the observable universe, the evidence for dark matter is compelling in dwarfs, spiral galaxies, galaxy clusters as well as at cosmological scales. However, it has been historically difficult to pin down the dark matter contribution to the total mass density in the Milky Way, particularly in the innermost regions of the Galaxy and in the solar neighbourhood. Here we present an up-to-date compilation of Milky Way rotation curve measurements, and compare it with state-of-the-art baryonic mass distribution models. We show that current data strongly disfavour baryons as the sole contribution to the galactic mass budget, even inside the solar circle. Our findings demonstrate the existence of dark matter in the inner Galaxy while making no assumptions on its distribution. We anticipate that this result will compel new model-independent constraints on the dark matter local density and profile, thus reducing uncertainties on direct and indirect dark matter searches, and will shed new light on the structure and evolution of the Galaxy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Galactic Searches for Dark Matter

              For nearly a century, more mass has been measured in galaxies than is contained in the luminous stars and gas. Through continual advances in observations and theory, it has become clear that the dark matter in galaxies is not comprised of known astronomical objects or baryonic matter, and that identification of it is certain to reveal a profound connection between astrophysics, cosmology, and fundamental physics. The best explanation for dark matter is that it is in the form of a yet undiscovered particle of nature, with experiments now gaining sensitivity to the most well-motivated particle dark matter candidates. In this article, I review measurements of dark matter in the Milky Way and its satellite galaxies and the status of Galactic searches for particle dark matter using a combination of terrestrial and space-based astroparticle detectors, and large scale astronomical surveys. I review the limits on the dark matter annihilation and scattering cross sections that can be extracted from both astroparticle experiments and astronomical observations, and explore the theoretical implications of these limits. I discuss methods to measure the properties of particle dark matter using future experiments, and conclude by highlighting the exciting potential for dark matter searches during the next decade, and beyond.
                Bookmark

                Author and article information

                Journal
                05 October 2017
                Article
                1710.02155
                d3abde85-7103-448e-984a-48b195005472

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                19 pages, 6 figures
                hep-ph astro-ph.HE hep-ex

                Comments

                Comment on this article