64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Solid tumors are complex organ-like structures that consist not only of tumor cells but also of vasculature, extracellular matrix (ECM), stromal, and immune cells. Often, this tumor microenvironment (TME) comprises the larger part of the overall tumor mass. Like the other components of the TME, the ECM in solid tumors differs significantly from that in normal organs. Intratumoral signaling, transport mechanisms, metabolisms, oxygenation, and immunogenicity are strongly affected if not controlled by the ECM. Exerting this regulatory control, the ECM does not only influence malignancy and growth of the tumor but also its response toward therapy. Understanding the particularities of the ECM in solid tumor is necessary to develop approaches to interfere with its negative effect. In this review, we will also highlight the current understanding of the physical, cellular, and molecular mechanisms by which the pathological tumor ECM affects the efficiency of radio-, chemo-, and immunotherapy. Finally, we will discuss the various strategies to target and modify the tumor ECM and how they could be utilized to improve response to therapy.

          Related collections

          Most cited references236

          • Record: found
          • Abstract: found
          • Article: not found

          The diverse functions of the PD1 inhibitory pathway

          T cell activation is a highly regulated process involving peptide-MHC engagement of the T cell receptor and positive costimulatory signals. Upon activation, coinhibitory 'checkpoints', including programmed cell death protein 1 (PD1), become induced to regulate T cells. PD1 has an essential role in balancing protective immunity and immunopathology, homeostasis and tolerance. However, during responses to chronic pathogens and tumours, PD1 expression can limit protective immunity. Recently developed PD1 pathway inhibitors have revolutionized cancer treatment for some patients, but the majority of patients do not show complete responses, and adverse events have been noted. This Review discusses the diverse roles of the PD1 pathway in regulating immune responses and how this knowledge can improve cancer immunotherapy as well as restore and/or maintain tolerance during autoimmunity and transplantation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Distinct role of macrophages in different tumor microenvironments.

            Macrophages are prominent in the stromal compartment of virtually all types of malignancy. These highly versatile cells respond to the presence of stimuli in different parts of tumors with the release of a distinct repertoire of growth factors, cytokines, chemokines, and enzymes that regulate tumor growth, angiogenesis, invasion, and/or metastasis. The distinct microenvironments where tumor-associated macrophages (TAM) act include areas of invasion where TAMs promote cancer cell motility, stromal and perivascular areas where TAMs promote metastasis, and avascular and perinecrotic areas where hypoxic TAMs stimulate angiogenesis. This review will discuss the evidence for differential regulation of TAMs in these microenvironments and provide an overview of current attempts to target or use TAMs for therapeutic purposes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Every step of the way: integrins in cancer progression and metastasis

              Cell adhesion to the extracellular matrix is fundamental to tissue integrity and human health. Integrins are the main cellular adhesion receptors that through multifaceted roles as signalling molecules, mechanotransducers and key components of the cell migration machinery are implicated in nearly every step of cancer progression from primary tumour development to metastasis. Altered integrin expression is frequently detected in tumours, where integrins have roles in supporting oncogenic growth factor receptor (GFR) signalling and GFR-dependent cancer cell migration and invasion. In addition, integrins determine colonization of metastatic sites and facilitate anchorage-independent survival of circulating tumour cells. Investigations describing integrin engagement with a growing number of versatile cell surface molecules, including channels, receptors and secreted proteins, continue to lead to the identification of novel tumour-promoting pathways. Integrin-mediated sensing, stiffening and remodelling of the tumour stroma are key steps in cancer progression supporting invasion, acquisition of cancer stem cell characteristics and drug resistance. Given the complexity of integrins and their adaptable and sometimes antagonistic roles in cancer cells and the tumour microenvironment, therapeutic targeting of these receptors has been a challenge. However, novel approaches to target integrins and antagonism of specific integrin subunits in stringently stratified patient cohorts are emerging as potential ways forward.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Mol Biosci
                Front Mol Biosci
                Front. Mol. Biosci.
                Frontiers in Molecular Biosciences
                Frontiers Media S.A.
                2296-889X
                31 January 2020
                2019
                : 6
                : 160
                Affiliations
                Department of Medicine, Institute of Anatomy and Cell Biology, Universität Würzburg , Würzburg, Germany
                Author notes

                Edited by: William Cho, Queen Elizabeth Hospital (QEH), Hong Kong

                Reviewed by: Haiyan Xiao, Augusta University, United States; Miroslaw Kornek, Medizinische Fakultät, Universität Bonn, Germany; Satyendra Chandra Tripathi, All India Institute of Medical Sciences Nagpur, India; Aniruddha Roy, Birla Institute of Technology and Science, India

                *Correspondence: Erik Henke erik.henke@ 123456uni-wuerzburg.de

                This article was submitted to Molecular Diagnostics and Therapeutics, a section of the journal Frontiers in Molecular Biosciences

                Article
                10.3389/fmolb.2019.00160
                7025524
                32118030
                d3a589de-a7a7-426a-ad07-cd3da00a97d0
                Copyright © 2020 Henke, Nandigama and Ergün.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 May 2019
                : 20 December 2019
                Page count
                Figures: 2, Tables: 3, Equations: 0, References: 315, Pages: 24, Words: 23251
                Funding
                Funded by: Wilhelm Sander-Stiftung 10.13039/100008672
                Funded by: Interdisziplinäres Zentrum für Klinische Forschung, Universitätsklinikum Würzburg 10.13039/501100009379
                Categories
                Molecular Biosciences
                Review

                extracellular matrix,cancer therapy,drug transport,immunotherapy,chemotherapy (ch),radiotherapy,tumor microenvironment,ecm

                Comments

                Comment on this article