33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cancer immunotherapy with γδ T cells: many paths ahead of us

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          γδ T cells play uniquely important roles in stress surveillance and immunity for infections and carcinogenesis. Human γδ T cells recognize and kill transformed cells independently of human leukocyte antigen (HLA) restriction, which is an essential feature of conventional αβ T cells. Vγ9Vδ2 γδ T cells, which prevail in the peripheral blood of healthy adults, are activated by microbial or endogenous tumor-derived pyrophosphates by a mechanism dependent on butyrophilin molecules. γδ T cells expressing other T cell receptor variable genes, notably Vδ1, are more abundant in mucosal tissue. In addition to the T cell receptor, γδ T cells usually express activating natural killer (NK) receptors, such as NKp30, NKp44, or NKG2D which binds to stress-inducible surface molecules that are absent on healthy cells but are frequently expressed on malignant cells. Therefore, γδ T cells are endowed with at least two independent recognition systems to sense tumor cells and to initiate anticancer effector mechanisms, including cytokine production and cytotoxicity. In view of their HLA-independent potent antitumor activity, there has been increasing interest in translating the unique potential of γδ T cells into innovative cellular cancer immunotherapies. Here, we discuss recent developments to enhance the efficacy of γδ T cell-based immunotherapy. This includes strategies for in vivo activation and tumor-targeting of γδ T cells, the optimization of in vitro expansion protocols, and the development of gene-modified γδ T cells. It is equally important to consider potential synergisms with other therapeutic strategies, notably checkpoint inhibitors, chemotherapy, or the (local) activation of innate immunity.

          Related collections

          Most cited references244

          • Record: found
          • Abstract: found
          • Article: not found

          Robust enumeration of cell subsets from tissue expression profiles

          We introduce CIBERSORT, a method for characterizing cell composition of complex tissues from their gene expression profiles. When applied to enumeration of hematopoietic subsets in RNA mixtures from fresh, frozen, and fixed tissues, including solid tumors, CIBERSORT outperformed other methods with respect to noise, unknown mixture content, and closely related cell types. CIBERSORT should enable large-scale analysis of RNA mixtures for cellular biomarkers and therapeutic targets (http://cibersort.stanford.edu).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The prognostic landscape of genes and infiltrating immune cells across human cancers.

            Molecular profiles of tumors and tumor-associated cells hold great promise as biomarkers of clinical outcomes. However, existing data sets are fragmented and difficult to analyze systematically. Here we present a pan-cancer resource and meta-analysis of expression signatures from ∼18,000 human tumors with overall survival outcomes across 39 malignancies. By using this resource, we identified a forkhead box MI (FOXM1) regulatory network as a major predictor of adverse outcomes, and we found that expression of favorably prognostic genes, including KLRB1 (encoding CD161), largely reflect tumor-associated leukocytes. By applying CIBERSORT, a computational approach for inferring leukocyte representation in bulk tumor transcriptomes, we identified complex associations between 22 distinct leukocyte subsets and cancer survival. For example, tumor-associated neutrophil and plasma cell signatures emerged as significant but opposite predictors of survival for diverse solid tumors, including breast and lung adenocarcinomas. This resource and associated analytical tools (http://precog.stanford.edu) may help delineate prognostic genes and leukocyte subsets within and across cancers, shed light on the impact of tumor heterogeneity on cancer outcomes, and facilitate the discovery of biomarkers and therapeutic targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transforming Growth Factor-β Signaling in Immunity and Cancer

              Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor.
                Bookmark

                Author and article information

                Contributors
                dietrich.kabelitz@uksh.de
                Journal
                Cell Mol Immunol
                Cell Mol Immunol
                Cellular and Molecular Immunology
                Nature Publishing Group UK (London )
                1672-7681
                2042-0226
                22 July 2020
                22 July 2020
                September 2020
                : 17
                : 9
                : 925-939
                Affiliations
                [1 ]GRID grid.9764.c, ISNI 0000 0001 2153 9986, Institute of Immunology, , Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, ; D-24105 Kiel, Germany
                [2 ]GRID grid.17091.3e, ISNI 0000 0001 2288 9830, Faculty of Medicine, , University of British Columbia, ; Vancouver, BC V6T 1Z4 Canada
                Author information
                http://orcid.org/0000-0002-4160-7103
                http://orcid.org/0000-0002-7669-3806
                http://orcid.org/0000-0002-7332-2225
                Article
                504
                10.1038/s41423-020-0504-x
                7609273
                32699351
                d391166f-1648-40d0-8631-6cd4c2e0e0a7
                © The Author(s) 2020, corrected publication 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 22 May 2020
                : 27 June 2020
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001659, Deutsche Forschungsgemeinschaft (German Research Foundation);
                Award ID: Ka 502/16-1
                Award ID: Ka 502/19-1
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/501100001655, Deutscher Akademischer Austauschdienst (German Academic Exchange Service);
                Award ID: Longterm fellowship
                Award ID: Longterm fellowship
                Award Recipient :
                Categories
                Review Article
                Custom metadata
                © CSI and USTC 2020

                Immunology
                adoptive t cell transfer,antibody constructs,cytokines,gamma/delta t cells,immunotherapy,leukemia,lymphoma,solid tumors,immunosurveillance,immunology

                Comments

                Comment on this article