15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Formamidinium perovskite films have been prepared by chemical vapor deposition, with cells demonstrating PCEs up to 14.2%, stability up to 155 days, semitransparency, large-area (1 cm 2), and tunable chlorine concentrations.

          Chemical vapor deposition is an inexpensive way to batch-process solar cells with good uniformity and facilitates low-cost production. Formamidinium lead iodide perovskite has a smaller energy band gap and greater potential efficiency than the widely studied methylammonium lead iodide perovskite and better temperature stability. This work is the first demonstration of vapor deposition of formamidinium-based perovskite. A self-limiting perovskite formation process is recommended, with efficiencies as high as 14.2% and stability up to 155 days after fabrication. Using this process, a batch of semi-transparent solar cells with a large area of 1 cm 2 was fabricated. We monitored the growth of perovskite in real time and provide insight that may not be accessible for a solution based process. We directly measured chlorine in perovskite films and correlated the concentration of chlorine with efficiency and stability.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Solar cells. Impact of microstructure on local carrier lifetime in perovskite solar cells.

          The remarkable performance of hybrid perovskite photovoltaics is attributed to their long carrier lifetimes and high photoluminescence (PL) efficiencies. High-quality films are associated with slower PL decays, and it has been claimed that grain boundaries have a negligible impact on performance. We used confocal fluorescence microscopy correlated with scanning electron microscopy to spatially resolve the PL decay dynamics from films of nonstoichiometric organic-inorganic perovskites, CH3NH3PbI3(Cl). The PL intensities and lifetimes varied between different grains in the same film, even for films that exhibited long bulk lifetimes. The grain boundaries were dimmer and exhibited faster nonradiative decay. Energy-dispersive x-ray spectroscopy showed a positive correlation between chlorine concentration and regions of brighter PL, whereas PL imaging revealed that chemical treatment with pyridine could activate previously dark grains. Copyright © 2015, American Association for the Advancement of Science.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2 PbI3.

            Perovskite solar cells with power conversion efficiencies exceeding 16% at AM 1.5 G one sun illumination are developed using the black polymorph of formamidnium lead iodide, HC(NH2)2 PbI3 . Compared with CH3 NH3 PbI3 , HC(NH2 )2 PbI3 extends its absoprtion to 840 nm and shows no phase transition between 296 and 423 K. Moreover, a solar cell based on HC(NH2 )2 PbI3 exhibits photostability and little I-V hysteresis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toward large scale roll-to-roll production of fully printed perovskite solar cells.

              Fully printed perovskite solar cells are demonstrated with slot-die coating, a scalable printing method. A sequential slot-die coating process is developed to produce efficient perovskite solar cells and to be used in a large-scale roll-to-roll printing process. All layers excluding the electrodes are printed and devices demonstrate up to 11.96% power conversion efficiency. It is also demonstrated that the new process can be used in roll-to-roll production.
                Bookmark

                Author and article information

                Journal
                JMCAET
                Journal of Materials Chemistry A
                J. Mater. Chem. A
                Royal Society of Chemistry (RSC)
                2050-7488
                2050-7496
                2015
                2015
                : 3
                : 31
                : 16097-16103
                Article
                10.1039/C5TA03577E
                d37d0c6b-60a2-4272-a00b-8d84b742d533
                © 2015
                History

                Comments

                Comment on this article