9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modelling the Interplay between Responsive Individual Vaccination Decisions and the Spread of SARS-CoV-2

      Preprint
      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The uptake of COVID-19 vaccines remains low despite their high effectiveness. Epidemic models that represent decision-making psychology can provide insight into the potential impact of vaccine promotion interventions in the context of the COVID-19 pandemic. We coupled a network-based mathematical model of SARS-CoV-2 transmission in Georgia, USA with a social-psychological vaccination decision-making model in which vaccine side effects, post-vaccination infections, and other unidentified community-level factors could “nudge” individuals towards vaccine resistance while hospitalization spikes could nudge them towards willingness.

          Combining an increased probability of hospitalization-prompted resistant-to-willing switches with a decreased probability of willing-to-resistant switches prompted by unidentified community-level factors increased vaccine uptake and decreased SARS-CoV-2 incidence by as much as 30.7% and 24.0%, respectively. The latter probability had a greater impact than the former. This illustrates the disease prevention potential of vaccine promotion interventions that address community-level factors influencing decision-making and anticipate the case curve instead of reacting to it.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine

          Abstract Background Vaccines are needed to prevent coronavirus disease 2019 (Covid-19) and to protect persons who are at high risk for complications. The mRNA-1273 vaccine is a lipid nanoparticle–encapsulated mRNA-based vaccine that encodes the prefusion stabilized full-length spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes Covid-19. Methods This phase 3 randomized, observer-blinded, placebo-controlled trial was conducted at 99 centers across the United States. Persons at high risk for SARS-CoV-2 infection or its complications were randomly assigned in a 1:1 ratio to receive two intramuscular injections of mRNA-1273 (100 μg) or placebo 28 days apart. The primary end point was prevention of Covid-19 illness with onset at least 14 days after the second injection in participants who had not previously been infected with SARS-CoV-2. Results The trial enrolled 30,420 volunteers who were randomly assigned in a 1:1 ratio to receive either vaccine or placebo (15,210 participants in each group). More than 96% of participants received both injections, and 2.2% had evidence (serologic, virologic, or both) of SARS-CoV-2 infection at baseline. Symptomatic Covid-19 illness was confirmed in 185 participants in the placebo group (56.5 per 1000 person-years; 95% confidence interval [CI], 48.7 to 65.3) and in 11 participants in the mRNA-1273 group (3.3 per 1000 person-years; 95% CI, 1.7 to 6.0); vaccine efficacy was 94.1% (95% CI, 89.3 to 96.8%; P<0.001). Efficacy was similar across key secondary analyses, including assessment 14 days after the first dose, analyses that included participants who had evidence of SARS-CoV-2 infection at baseline, and analyses in participants 65 years of age or older. Severe Covid-19 occurred in 30 participants, with one fatality; all 30 were in the placebo group. Moderate, transient reactogenicity after vaccination occurred more frequently in the mRNA-1273 group. Serious adverse events were rare, and the incidence was similar in the two groups. Conclusions The mRNA-1273 vaccine showed 94.1% efficacy at preventing Covid-19 illness, including severe disease. Aside from transient local and systemic reactions, no safety concerns were identified. (Funded by the Biomedical Advanced Research and Development Authority and the National Institute of Allergy and Infectious Diseases; COVE ClinicalTrials.gov number, NCT04470427.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Judgment under Uncertainty: Heuristics and Biases.

            This article described three heuristics that are employed in making judgements under uncertainty: (i) representativeness, which is usually employed when people are asked to judge the probability that an object or event A belongs to class or process B; (ii) availability of instances or scenarios, which is often employed when people are asked to assess the frequency of a class or the plausibility of a particular development; and (iii) adjustment from an anchor, which is usually employed in numerical prediction when a relevant value is available. These heuristics are highly economical and usually effective, but they lead to systematic and predictable errors. A better understanding of these heuristics and of the biases to which they lead could improve judgements and decisions in situations of uncertainty.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A single-cell atlas of the peripheral immune response in patients with severe COVID-19

              There is an urgent need to better understand the pathophysiology of Coronavirus disease 2019 (COVID-19), the global pandemic caused by SARS-CoV-2, which has infected more than three million people worldwide1. Approximately 20% of patients with COVID-19 develop severe disease and 5% of patients require intensive care2. Severe disease has been associated with changes in peripheral immune activity, including increased levels of pro-inflammatory cytokines3,4 that may be produced by a subset of inflammatory monocytes5,6, lymphopenia7,8 and T cell exhaustion9,10. To elucidate pathways in peripheral immune cells that might lead to immunopathology or protective immunity in severe COVID-19, we applied single-cell RNA sequencing (scRNA-seq) to profile peripheral blood mononuclear cells (PBMCs) from seven patients hospitalized for COVID-19, four of whom had acute respiratory distress syndrome, and six healthy controls. We identify reconfiguration of peripheral immune cell phenotype in COVID-19, including a heterogeneous interferon-stimulated gene signature, HLA class II downregulation and a developing neutrophil population that appears closely related to plasmablasts appearing in patients with acute respiratory failure requiring mechanical ventilation. Importantly, we found that peripheral monocytes and lymphocytes do not express substantial amounts of pro-inflammatory cytokines. Collectively, we provide a cell atlas of the peripheral immune response to severe COVID-19.
                Bookmark

                Author and article information

                Journal
                medRxiv
                MEDRXIV
                medRxiv
                Cold Spring Harbor Laboratory
                25 August 2023
                : 2023.08.24.23294588
                Affiliations
                [1 ]Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
                Author notes

                CONTRIBUTIONS

                KWS conceived of, designed, and conducted the analysis and wrote the manuscript. SMJ provided direction to the development of the study design, supervised the analysis, and provided critical input to the manuscript. BAL and MGQ provided input on the study design and critically reviewed and edited the manuscript.

                CORRESPONDENCE: Karina Wallrafen-Sam, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA, karinawallrafensam2019@ 123456u.northwestern.edu
                Article
                10.1101/2023.08.24.23294588
                10473817
                37662331
                d362afb3-cea2-4719-9489-c11978342096

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.

                History
                Funding
                Funded by: National Institutes of Health
                Award ID: R01 AI138783
                Award ID: R01 HD097175
                Award ID: R01 AI161399
                Categories
                Article

                Comments

                Comment on this article