12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The allometry of movement predicts the connectivity of communities

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Connectivity has long played a central role in ecological and evolutionary theory and is increasingly emphasized for conserving biodiversity. Nonetheless, connectivity assessments often focus on individual species even though understanding and preserving connectivity for entire communities is urgently needed. Here we derive and test a framework that harnesses the well-known allometric scaling of animal movement to predict community-level connectivity across protected area networks. We used a field translocation experiment involving 39 species of southern African birds to quantify movement capacity, scaled this relationship to realized dispersal distances determined from ring-and-recovery banding data, and used allometric scaling equations to quantify community-level connectivity based on multilayer network theory. The translocation experiment explained observed dispersal distances from ring-recovery data and emphasized allometric scaling of dispersal based on morphology. Our community-level networks predicted that larger-bodied species had a relatively high potential for connectivity, while small-bodied species had lower connectivity. These community networks explained substantial variation in observed bird diversity across protected areas. Our results highlight that harnessing allometric scaling can be an effective way of determining large-scale community connectivity. We argue that this trait-based framework founded on allometric scaling provides a means to predict connectivity for entire communities, which can foster empirical tests of community theory and contribute to biodiversity conservation strategies aimed at mitigating the effects of environmental change.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: not found
          • Article: not found

          Estimating landscape resistance to movement: a review

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            LANDSCAPE CONNECTIVITY: A GRAPH-THEORETIC PERSPECTIVE

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The metapopulation capacity of a fragmented landscape.

              Ecologists and conservation biologists have used many measures of landscape structure to predict the population dynamic consequences of habitat loss and fragmentation, but these measures are not well justified by population dynamic theory. Here we introduce a new measure for highly fragmented landscapes, termed the metapopulation capacity, which is rigorously derived from metapopulation theory and can easily be applied to real networks of habitat fragments with known areas and connectivities. Technically, metapopulation capacity is the leading eigenvalue of an appropriate 'landscape' matrix. A species is predicted to persist in a landscape if the metapopulation capacity of that landscape is greater than a threshold value determined by the properties of the species. Therefore, metapopulation capacity can conveniently be used to rank different landscapes in terms of their capacity to support viable metapopulations. We present an empirical example on multiple networks occupied by an endangered species of butterfly. Using this theory, we may also calculate how the metapopulation capacity is changed by removing habitat fragments from or adding new ones into specific spatial locations, or by changing their areas. The metapopulation capacity should find many applications in metapopulation ecology, landscape ecology and conservation biology.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                August 26 2020
                : 202001614
                Article
                10.1073/pnas.2001614117
                7486732
                32848069
                d3619ae3-9e02-4d7c-b030-773b6a19a29b
                © 2020

                Free to read

                https://www.pnas.org/site/aboutpnas/licenses.xhtml

                History

                Comments

                Comment on this article