5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-wide identification and comparative analysis of the Amino Acid Transporter ( AAT) gene family and their roles during Phaseolus vulgaris symbioses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Amino acid transporters (AATs) are essential integral membrane proteins that serve multiple roles, such as facilitating the transport of amino acids across cell membranes. They play a crucial role in the growth and development of plants. Phaseolus vulgaris, a significant legume crop, serves as a valuable model for studying root symbiosis. In this study, we have conducted an exploration of the AAT gene family in P. vulgaris. In this research, we identified 84 AAT genes within the P. vulgaris genome sequence and categorized them into 12 subfamilies based on their similarity and phylogenetic relationships with AATs found in Arabidopsis and rice. Interestingly, these AAT genes were not evenly distributed across the chromosomes of P. vulgaris . Instead, there was an unusual concentration of these genes located toward the outer edges of chromosomal arms. Upon conducting motif analysis and gene structural analysis, we observed a consistent presence of similar motifs and an intron-exon distribution pattern among the subfamilies. When we analyzed the expression profiles of PvAAT genes, we noted tissue-specific expression patterns. Furthermore, our investigation into AAT gene expression under rhizobial and mycorrhizal symbiotic conditions revealed that certain genes exhibited high levels of expression. Specifically, ATLa5 and LHT2 was notably upregulated under both symbiotic conditions. These findings point towards a potential role of AATs in the context of rhizobial and mycorrhizal symbiosis in P. vulgaris, in addition to their well-established regulatory functions.

          Supplementary Information

          The online version contains supplementary material available at 10.1007/s10142-024-01331-0.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          GSDS 2.0: an upgraded gene feature visualization server

          Summary: Visualizing genes’ structure and annotated features helps biologists to investigate their function and evolution intuitively. The Gene Structure Display Server (GSDS) has been widely used by more than 60 000 users since its first publication in 2007. Here, we reported the upgraded GSDS 2.0 with a newly designed interface, supports for more types of annotation features and formats, as well as an integrated visual editor for editing the generated figure. Moreover, a user-specified phylogenetic tree can be added to facilitate further evolutionary analysis. The full source code is also available for downloading. Availability and implementation: Web server and source code are freely available at http://gsds.cbi.pku.edu.cn. Contact: gaog@mail.cbi.pku.edu.cn or gsds@mail.cbi.pku.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture.

            Productive agriculture needs a large amount of expensive nitrogenous fertilizers. Improving nitrogen use efficiency (NUE) of crop plants is thus of key importance. NUE definitions differ depending on whether plants are cultivated to produce biomass or grain yields. However, for most plant species, NUE mainly depends on how plants extract inorganic nitrogen from the soil, assimilate nitrate and ammonium, and recycle organic nitrogen. Efforts have been made to study the genetic basis as well as the biochemical and enzymatic mechanisms involved in nitrogen uptake, assimilation, and remobilization in crops and model plants. The detection of the limiting factors that could be manipulated to increase NUE is the major goal of such research. An overall examination of the physiological, metabolic, and genetic aspects of nitrogen uptake, assimilation and remobilization is presented in this review. The enzymes and regulatory processes manipulated to improve NUE components are presented. Results obtained from natural variation and quantitative trait loci studies are also discussed. This review presents the complexity of NUE and supports the idea that the integration of the numerous data coming from transcriptome studies, functional genomics, quantitative genetics, ecophysiology and soil science into explanatory models of whole-plant behaviour will be promising.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A gene expression map of the Arabidopsis root.

              A global map of gene expression within an organ can identify genes with coordinated expression in localized domains, thereby relating gene activity to cell fate and tissue specialization. Here, we present localization of expression of more than 22,000 genes in the Arabidopsis root. Gene expression was mapped to 15 different zones of the root that correspond to cell types and tissues at progressive developmental stages. Patterns of gene expression traverse traditional anatomical boundaries and show cassettes of hormonal response. Chromosomal clustering defined some coregulated genes. This expression map correlates groups of genes to specific cell fates and should serve to guide reverse genetics.
                Bookmark

                Author and article information

                Contributors
                kalpana@enes.unam.mx
                manoj@enes.unam.mx
                Journal
                Funct Integr Genomics
                Funct Integr Genomics
                Functional & Integrative Genomics
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                1438-793X
                1438-7948
                2 March 2024
                2 March 2024
                2024
                : 24
                : 2
                : 47
                Affiliations
                [1 ]Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México (UNAM), Leon, Guanajuato, C.P. 37689 México
                [2 ]Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), ( https://ror.org/01tmp8f25) Cuernavaca, 62210 Morelos México
                Author information
                https://orcid.org/0000-0002-7052-4120
                https://orcid.org/0000-0002-5885-7950
                https://orcid.org/0000-0002-4535-6524
                Article
                1331
                10.1007/s10142-024-01331-0
                10908646
                38430379
                d33f8230-b842-423a-9a64-22622324630e
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 25 January 2024
                : 26 February 2024
                : 27 February 2024
                Categories
                Original Article
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2024

                Genetics
                amino acid transporters,genome-wide analysis,legumes,mycorrhiza,phaseolus vulgaris,rhizobium,symbiosis

                Comments

                Comment on this article