46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cellular immune response to intrastriatally implanted allogeneic bone marrow stromal cells in a rat model of Parkinson's disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Marrow stromal cells (MSC), the non-hematopoietic precursor cells in bone marrow, are being investigated for therapeutic potential in CNS disorders. Although in vitro studies have suggested that MSC may be immunologically inert, their immunogenicity following transplantation into allogeneic recipients is unclear. The primary objective of this study was to investigate the cellular immune response to MSC injected into the striatum of allogeneic recipients (6-hydroxydopamine [6-OHDA]-hemilesioned rats, an animal model of Parkinson's disease [PD]), and the secondary objective was to determine the ability of these cells to prevent nigrostriatal dopamine depletion and associated motor deficits in these animals.

          Methods

          5-Bromo-2-deoxyuridine (BrdU) – labeled MSC from two allogeneic sources (Wistar and ACI rats) were implanted into the striatum of adult Wistar rats at the same time as 6-OHDA was administered into the substantia nigra. Behavioral tests were administered one to two weeks before and 16–20 days after 6-OHDA lesioning and MSC transplantation. Immunocytochemical staining for T helper and T cytotoxic lymphocytes, microglia/macrophages, and major histocompatibility class I and II antigens was performed on post-transplantation days 22–24. MSC were detected with an anti-BrdU antibody.

          Results

          Tissue injury due to the transplantation procedure produced a localized cellular immune response. Unexpectedly, both sources of allogeneic MSC generated robust cellular immune responses in the host striatum; the extent of this response was similar in the two allograft systems. Despite these immune responses, BrdU + cells (presumptive MSC) remained in the striatum of all animals that received MSC. The numbers of remaining MSC tended to be increased ( p = 0.055) in rats receiving Wistar MSC versus those receiving ACI MSC. MSC administration did not prevent behavioral deficits or dopamine depletion in the 6-OHDA-lesioned animals.

          Conclusion

          MSC, when implanted into the striatum of allogeneic animals, provoke a marked immune response which is not sufficient to clear these cells by 22–24 days post-transplantation. In the experimental paradigm in this study, MSC did not prevent nigrostriatal dopamine depletion and its associated behavioral deficits. Additional studies are indicated to clarify the effects of this immune response on MSC survival and function before initiating trials with these cells in patients with PD or other neurodegenerative disorders.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells.

          Adult bone-marrow-derived mesenchymal stem cells are immunosuppressive and prolong the rejection of mismatched skin grafts in animals. We transplanted haploidentical mesenchymal stem cells in a patient with severe treatment-resistant grade IV acute graft-versus-host disease of the gut and liver. Clinical response was striking. The patient is now well after 1 year. We postulate that mesenchymal stem cells have a potent immunosuppressive effect in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adult rat and human bone marrow stromal cells differentiate into neurons.

            Bone marrow stromal cells exhibit multiple traits of a stem cell population. They can be greatly expanded in vitro and induced to differentiate into multiple mesenchymal cell types. However, differentiation to non-mesenchymal fates has not been demonstrated. Here, adult rat stromal cells were expanded as undifferentiated cells in culture for more than 20 passages, indicating their proliferative capacity. A simple treatment protocol induced the stromal cells to exhibit a neuronal phenotype, expressing neuron-specific enolase, NeuN, neurofilament-M, and tau. With an optimal differentiation protocol, almost 80% of the cells expressed NSE and NF-M. The refractile cell bodies extended long processes terminating in typical growth cones and filopodia. The differentiating cells expressed nestin, characteristic of neuronal precursor stem cells, at 5 hr, but the trait was undetectable at 6 days. In contrast, expression of trkA, the nerve growth factor receptor, persisted from 5 hr through 6 days. Clonal cell lines, established from single cells, proliferated, yielding both undifferentiated and neuronal cells. Human marrow stromal cells subjected to this protocol also differentiated into neurons. Consequently, adult marrow stromal cells can be induced to overcome their mesenchymal commitment and may constitute an abundant and accessible cellular reservoir for the treatment of a variety of neurologic diseases. Copyright 2000 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transplantation of embryonic dopamine neurons for severe Parkinson's disease.

              Transplantation of human embryonic dopamine neurons into the brains of patients with Parkinson's disease has proved beneficial in open clinical trials. However, whether this intervention would be more effective than sham surgery in a controlled trial is not known. We randomly assigned 40 patients who were 34 to 75 years of age and had severe Parkinson's disease (mean duration, 14 years) to receive a transplant of nerve cells or sham surgery; all were to be followed in a double-blind manner for one year. In the transplant recipients, cultured mesencephalic tissue from four embryos was implanted into the putamen bilaterally. In the patients who received sham surgery, holes were drilled in the skull but the dura was not penetrated. The primary outcome was a subjective global rating of the change in the severity of disease, scored on a scale of -3.0 to 3.0 at one year, with negative scores indicating a worsening of symptoms and positive scores an improvement. The mean (+/-SD) scores on the global rating scale for improvement or deterioration at one year were 0.0+/-2.1 in the transplantation group and -0.4+/-1.7 in the sham-surgery group. Among younger patients (60 years old or younger), standardized tests of Parkinson's disease revealed significant improvement in the transplantation group as compared with the sham-surgery group when patients were tested in the morning before receiving medication (P=0.01 for scores on the Unified Parkinson's Disease Rating Scale; P=0.006 for the Schwab and England score). There was no significant improvement in older patients in the transplantation group. Fiber outgrowth from the transplanted neurons was detected in 17 of the 20 patients in the transplantation group, as indicated by an increase in 18F-fluorodopa uptake on positron-emission tomography or postmortem examination. After improvement in the first year, dystonia and dyskinesias recurred in 15 percent of the patients who received transplants, even after reduction or discontinuation of the dose of levodopa. Human embryonic dopamine-neuron transplants survive in patients with severe Parkinson's disease and result in some clinical benefit in younger but not in older patients.
                Bookmark

                Author and article information

                Journal
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central
                1742-2094
                2009
                5 June 2009
                : 6
                : 17
                Affiliations
                [1 ]Division of Neurology, William Beaumont Hospital Research Institute, Royal Oak, Michigan 48073, USA
                [2 ]Cognate Bioservices, Baltimore, Maryland, USA
                [3 ]Department of Neurology, Henry Ford Hospital, Detroit, Michigan 48034, USA
                Article
                1742-2094-6-17
                10.1186/1742-2094-6-17
                2700085
                19500379
                d316755a-e8a2-47cf-a482-628d74c5dc83
                Copyright © 2009 Camp et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 March 2009
                : 5 June 2009
                Categories
                Research

                Neurosciences
                Neurosciences

                Comments

                Comment on this article