5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mesenchymal Stem Cell‐Derived Exosomes for Effective Cartilage Tissue Repair and Treatment of Osteoarthritis

      1 , 2 , 1
      Biotechnology Journal
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          Multilineage potential of adult human mesenchymal stem cells.

          Human mesenchymal stem cells are thought to be multipotent cells, which are present in adult marrow, that can replicate as undifferentiated cells and that have the potential to differentiate to lineages of mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Cells that have the characteristics of human mesenchymal stem cells were isolated from marrow aspirates of volunteer donors. These cells displayed a stable phenotype and remained as a monolayer in vitro. These adult stem cells could be induced to differentiate exclusively into the adipocytic, chondrocytic, or osteocytic lineages. Individual stem cells were identified that, when expanded to colonies, retained their multilineage potential.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extracellular vesicles: biology and emerging therapeutic opportunities.

            Within the past decade, extracellular vesicles have emerged as important mediators of intercellular communication, being involved in the transmission of biological signals between cells in both prokaryotes and higher eukaryotes to regulate a diverse range of biological processes. In addition, pathophysiological roles for extracellular vesicles are beginning to be recognized in diseases including cancer, infectious diseases and neurodegenerative disorders, highlighting potential novel targets for therapeutic intervention. Moreover, both unmodified and engineered extracellular vesicles are likely to have applications in macromolecular drug delivery. Here, we review recent progress in understanding extracellular vesicle biology and the role of extracellular vesicles in disease, discuss emerging therapeutic opportunities and consider the associated challenges.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Osteoarthritis cartilage histopathology: grading and staging.

              Current osteoarthritis (OA) histopathology assessment methods have difficulties in their utility for early disease, as well as their reproducibility and validity. Our objective was to devise a more useful method to assess OA histopathology that would have wide application for clinical and experimental OA assessment and would become recognized as the standard method. An OARSI Working Group deliberated on principles, standards and features for an OA cartilage pathology assessment system. Using current knowledge of the pathophysiology of OA morphologic features, a proposed system was presented at OARSI 2000. Subsequently, this was widely circulated for comments amongst experts in OA pathology. An OA cartilage pathology assessment system based on six grades, which reflect depth of the lesion and four stages reflecting extent of OA over the joint surface was developed. The OARSI cartilage OA histopathology grading system appears consistent and simple to apply. Further studies are required to confirm the system's utility.
                Bookmark

                Author and article information

                Journal
                Biotechnology Journal
                Biotechnol. J.
                Wiley
                1860-6768
                1860-7314
                December 2020
                July 13 2020
                December 2020
                : 15
                : 12
                : 2000082
                Affiliations
                [1 ]Department of Chemical and Biochemical Engineering Dongguk University 30 Pildong‐ro 1‐gil Seoul 04620 Republic of Korea
                [2 ]School of Integrative Engineering Chung‐Ang University 47 Heukseok‐ro Seoul 06911 Republic of Korea
                Article
                10.1002/biot.202000082
                32559340
                d2fe21ba-8014-464f-8627-6d6ec8eb7866
                © 2020

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article