5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multidrug-resistant Acinetobacter spp. from hospital intensive care units in Brazilian Amazon

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acinetobacter spp. are one of the main pathogens responsible for healthcare-associated infections and are associated with high rates of morbidity and mortality globally, mainly because of their high capacity to present and develop resistance to antimicrobials. To identify species of the Acinetobacter and their resistance profiles from samples collected from hospitalized patients, health professionals and hospital environmental sources in the intensive care units of different public reference hospitals in Porto Velho City, Rondônia, Western Brazilian Amazon. Isolates were identified using microbiological and molecular techniques. The antimicrobial susceptibility profile was determined by disk diffusion. A total of 201 Acinetobacter spp. isolates were identified, of which 47.3% originated from hospital structures, 46.8% from patients and 6% from healthcare professionals. A. baumannii and A. nosocomialis were the most prevalent, with frequency of 58.7% and 31.8%, respectively. Regarding the susceptibility profile, it was observed that 56.3% were classified as multidrug-resistant and 76.2% of the samples belonging to A. baumannii were resistant to carbapenems. In contrast, 96.9% were susceptible to polymyxin B and 91.3% to doxycycline. The data presented here can be used to guide and strengthen the control of multidrug-resistant infections caused by Acinetobacter spp., in addition to improving providing information from a traditionally unassisted region of Brazil.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.

          Many different definitions for multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR) bacteria are being used in the medical literature to characterize the different patterns of resistance found in healthcare-associated, antimicrobial-resistant bacteria. A group of international experts came together through a joint initiative by the European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC), to create a standardized international terminology with which to describe acquired resistance profiles in Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae (other than Salmonella and Shigella), Pseudomonas aeruginosa and Acinetobacter spp., all bacteria often responsible for healthcare-associated infections and prone to multidrug resistance. Epidemiologically significant antimicrobial categories were constructed for each bacterium. Lists of antimicrobial categories proposed for antimicrobial susceptibility testing were created using documents and breakpoints from the Clinical Laboratory Standards Institute (CLSI), the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the United States Food and Drug Administration (FDA). MDR was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories, XDR was defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories (i.e. bacterial isolates remain susceptible to only one or two categories) and PDR was defined as non-susceptibility to all agents in all antimicrobial categories. To ensure correct application of these definitions, bacterial isolates should be tested against all or nearly all of the antimicrobial agents within the antimicrobial categories and selective reporting and suppression of results should be avoided. © 2011 European Society of Clinical Microbiology and Infectious Diseases. No claim to original US government works.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis

            (2022)
            Summary Background Antimicrobial resistance (AMR) poses a major threat to human health around the world. Previous publications have estimated the effect of AMR on incidence, deaths, hospital length of stay, and health-care costs for specific pathogen–drug combinations in select locations. To our knowledge, this study presents the most comprehensive estimates of AMR burden to date. Methods We estimated deaths and disability-adjusted life-years (DALYs) attributable to and associated with bacterial AMR for 23 pathogens and 88 pathogen–drug combinations in 204 countries and territories in 2019. We obtained data from systematic literature reviews, hospital systems, surveillance systems, and other sources, covering 471 million individual records or isolates and 7585 study-location-years. We used predictive statistical modelling to produce estimates of AMR burden for all locations, including for locations with no data. Our approach can be divided into five broad components: number of deaths where infection played a role, proportion of infectious deaths attributable to a given infectious syndrome, proportion of infectious syndrome deaths attributable to a given pathogen, the percentage of a given pathogen resistant to an antibiotic of interest, and the excess risk of death or duration of an infection associated with this resistance. Using these components, we estimated disease burden based on two counterfactuals: deaths attributable to AMR (based on an alternative scenario in which all drug-resistant infections were replaced by drug-susceptible infections), and deaths associated with AMR (based on an alternative scenario in which all drug-resistant infections were replaced by no infection). We generated 95% uncertainty intervals (UIs) for final estimates as the 25th and 975th ordered values across 1000 posterior draws, and models were cross-validated for out-of-sample predictive validity. We present final estimates aggregated to the global and regional level. Findings On the basis of our predictive statistical models, there were an estimated 4·95 million (3·62–6·57) deaths associated with bacterial AMR in 2019, including 1·27 million (95% UI 0·911–1·71) deaths attributable to bacterial AMR. At the regional level, we estimated the all-age death rate attributable to resistance to be highest in western sub-Saharan Africa, at 27·3 deaths per 100 000 (20·9–35·3), and lowest in Australasia, at 6·5 deaths (4·3–9·4) per 100 000. Lower respiratory infections accounted for more than 1·5 million deaths associated with resistance in 2019, making it the most burdensome infectious syndrome. The six leading pathogens for deaths associated with resistance (Escherichia coli, followed by Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa) were responsible for 929 000 (660 000–1 270 000) deaths attributable to AMR and 3·57 million (2·62–4·78) deaths associated with AMR in 2019. One pathogen–drug combination, meticillin-resistant S aureus, caused more than 100 000 deaths attributable to AMR in 2019, while six more each caused 50 000–100 000 deaths: multidrug-resistant excluding extensively drug-resistant tuberculosis, third-generation cephalosporin-resistant E coli, carbapenem-resistant A baumannii, fluoroquinolone-resistant E coli, carbapenem-resistant K pneumoniae, and third-generation cephalosporin-resistant K pneumoniae. Interpretation To our knowledge, this study provides the first comprehensive assessment of the global burden of AMR, as well as an evaluation of the availability of data. AMR is a leading cause of death around the world, with the highest burdens in low-resource settings. Understanding the burden of AMR and the leading pathogen–drug combinations contributing to it is crucial to making informed and location-specific policy decisions, particularly about infection prevention and control programmes, access to essential antibiotics, and research and development of new vaccines and antibiotics. There are serious data gaps in many low-income settings, emphasising the need to expand microbiology laboratory capacity and data collection systems to improve our understanding of this important human health threat. Funding Bill & Melinda Gates Foundation, Wellcome Trust, and Department of Health and Social Care using UK aid funding managed by the Fleming Fund.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Updated functional classification of beta-lactamases.

              Two classification schemes for beta-lactamases are currently in use. The molecular classification is based on the amino acid sequence and divides beta-lactamases into class A, C, and D enzymes which utilize serine for beta-lactam hydrolysis and class B metalloenzymes which require divalent zinc ions for substrate hydrolysis. The functional classification scheme updated herein is based on the 1995 proposal by Bush et al. (K. Bush, G. A. Jacoby, and A. A. Medeiros, Antimicrob. Agents Chemother. 39:1211-1233, 1995). It takes into account substrate and inhibitor profiles in an attempt to group the enzymes in ways that can be correlated with their phenotype in clinical isolates. Major groupings generally correlate with the more broadly based molecular classification. The updated system includes group 1 (class C) cephalosporinases; group 2 (classes A and D) broad-spectrum, inhibitor-resistant, and extended-spectrum beta-lactamases and serine carbapenemases; and group 3 metallo-beta-lactamases. Several new subgroups of each of the major groups are described, based on specific attributes of individual enzymes. A list of attributes is also suggested for the description of a new beta-lactamase, including the requisite microbiological properties, substrate and inhibitor profiles, and molecular sequence data that provide an adequate characterization for a new beta-lactam-hydrolyzing enzyme.
                Bookmark

                Author and article information

                Contributors
                Journal
                Braz J Infect Dis
                Braz J Infect Dis
                The Brazilian Journal of Infectious Diseases
                Elsevier
                1413-8670
                1678-4391
                14 November 2023
                Nov-Dec 2023
                14 November 2023
                : 27
                : 6
                : 103687
                Affiliations
                [a ]Fundação Oswaldo Cruz (FIOCRUZ/RO), Laboratório de Microbiologia, Porto Velho, RO, Brazil
                [b ]Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
                [c ]Programa de Pós-Graduação em Biologia Experimental, Porto Velho, RO, Brazil
                [d ]Instituto Oswaldo Cruz (IOC), Programa de Pós-graduação em Biologia Celular e Molecular (PGBCM), Fiocruz, Rio de Janeiro, RJ, Brazil
                [e ]Centro de Pesquisa em Medicina Tropical de Rondônia (CEPEM), Porto Velho, RO, Brazil
                [f ]Instituto Nacional de Epidemiologia na Amazônia Ocidental (INCT-EPIAMO), Porto Velho, RO, Brazil
                Author notes
                [* ]Corresponding author. najla.matos@ 123456fiocruz.br
                Article
                S1413-8670(23)00947-9 103687
                10.1016/j.bjid.2023.103687
                10667742
                37977198
                d2f91896-a770-43b8-821c-35f943e1a586
                © 2023 Sociedade Brasileira de Infectologia. Published by Elsevier España, S.L.U.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 19 June 2023
                : 31 October 2023
                Categories
                Original Article

                antibiotic resistance profile,acinetobacter spp.,intensive care units,porto velho brazilian amazon

                Comments

                Comment on this article