6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Self‐Powered Piezo‐Bioelectric Device Regulates Tendon Repair‐Associated Signaling Pathways through Modulation of Mechanosensitive Ion Channels

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Piezo2 is the major transducer of mechanical forces for touch sensation in mice.

          The sense of touch provides critical information about our physical environment by transforming mechanical energy into electrical signals. It is postulated that mechanically activated cation channels initiate touch sensation, but the identity of these molecules in mammals has been elusive. Piezo2 is a rapidly adapting, mechanically activated ion channel expressed in a subset of sensory neurons of the dorsal root ganglion and in cutaneous mechanoreceptors known as Merkel-cell-neurite complexes. It has been demonstrated that Merkel cells have a role in vertebrate mechanosensation using Piezo2, particularly in shaping the type of current sent by the innervating sensory neuron; however, major aspects of touch sensation remain intact without Merkel cell activity. Here we show that mice lacking Piezo2 in both adult sensory neurons and Merkel cells exhibit a profound loss of touch sensation. We precisely localize Piezo2 to the peripheral endings of a broad range of low-threshold mechanoreceptors that innervate both hairy and glabrous skin. Most rapidly adapting, mechanically activated currents in dorsal root ganglion neuronal cultures are absent in Piezo2 conditional knockout mice, and ex vivo skin nerve preparation studies show that the mechanosensitivity of low-threshold mechanoreceptors strongly depends on Piezo2. This cellular phenotype correlates with an unprecedented behavioural phenotype: an almost complete deficit in light-touch sensation in multiple behavioural assays, without affecting other somatosensory functions. Our results highlight that a single ion channel that displays rapidly adapting, mechanically activated currents in vitro is responsible for the mechanosensitivity of most low-threshold mechanoreceptor subtypes involved in innocuous touch sensation. Notably, we find that touch and pain sensation are separable, suggesting that as-yet-unknown mechanically activated ion channel(s) must account for noxious (painful) mechanosensation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering.

            Although the biological functions of cell and tissue can be regulated by biochemical factors (e.g., growth factors, hormones), the biophysical effects of materials on the regulation of biological activity are receiving more attention. In this Review, we systematically summarize the recent progress on how biomaterials with controllable properties (e.g., compositional/degradable dynamics, mechanical properties, 2D topography, and 3D geometry) can regulate cell behaviors (e.g., cell adhesion, spreading, proliferation, cell alignment, and the differentiation or self-maintenance of stem cells) and tissue/organ functions. How the biophysical features of materials influence tissue/organ regeneration have been elucidated. Current challenges and a perspective on the development of novel materials that can modulate specific biological functions are discussed. The interdependent relationship between biomaterials and biology leads us to propose the concept of "materiobiology", which is a scientific discipline that studies the biological effects of the properties of biomaterials on biological functions at cell, tissue, organ, and the whole organism levels. This Review highlights that it is more important to develop ECM-mimicking biomaterials having a self-regenerative capacity to stimulate tissue regeneration, instead of attempting to recreate the complexity of living tissues or tissue constructs ex vivo. The principles of materiobiology may benefit the development of novel biomaterials providing combinative bioactive cues to activate the migration of stem cells from endogenous reservoirs (i.e., cell niches), stimulate robust and scalable self-healing mechanisms, and unlock the body's innate powers of regeneration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tendon injury: from biology to tendon repair.

              Tendon is a crucial component of the musculoskeletal system. Tendons connect muscle to bone and transmit forces to produce motion. Chronic and acute tendon injuries are very common and result in considerable pain and disability. The management of tendon injuries remains a challenge for clinicians. Effective treatments for tendon injuries are lacking because the understanding of tendon biology lags behind that of the other components of the musculoskeletal system. Animal and cellular models have been developed to study tendon-cell differentiation and tendon repair following injury. These studies have highlighted specific growth factors and transcription factors involved in tenogenesis during developmental and repair processes. Mechanical factors also seem to be essential for tendon development, homeostasis and repair. Mechanical signals are transduced via molecular signalling pathways that trigger adaptive responses in the tendon. Understanding the links between the mechanical and biological parameters involved in tendon development, homeostasis and repair is prerequisite for the identification of effective treatments for chronic and acute tendon injuries.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Advanced Materials
                Adv. Mater.
                Wiley
                0935-9648
                1521-4095
                August 23 2021
                : 2008788
                Affiliations
                [1 ]CÚRAM SFI Research Centre for Medical Devices National University of Ireland Galway H91W2TY Ireland
                [2 ]University of the Basque Country Department of Mining‐Metallurgy Engineering and Materials Science and POLYMAT Barrio Sarriena Bilbao 48013 Spain
                [3 ]University of Limerick Department of Physics Limerick V94 T9PX Ireland
                [4 ]Queen Mary University of London Materials Research Institute and School of Biological and Chemical Sciences Mile End Road London E1 4NS UK
                Article
                10.1002/adma.202008788
                34423493
                d2d257ed-6f86-475d-b21e-7a2734456d63
                © 2021

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article