5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of Septins in Endothelial Cells and Platelets

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Septins are conserved cytoskeletal GTP-binding proteins identified in almost all eukaryotes except higher plants. Mammalian septins comprise 13 family members with either ubiquitous or organ- and tissue-specific expression patterns. They form filamentous oligomers and complexes with other proteins to serve as diffusions barrier and/or multi-molecular scaffolds to function in a physiologically regulated manner. Diverse septins are highly expressed in endothelial cells and platelets, which play an important role in hemostasis, a process to prevent blood loss after vascular injury. Endothelial septins are involved in cellular processes such as exocytosis and in processes concerning organismal level, like angiogenesis. Septins are additionally found in endothelial cell-cell junctions where their presence is required to maintain the integrity of the barrier function of vascular endothelial monolayers. In platelets, septins are important for activation, degranulation, adhesion, and aggregation. They have been identified as mediators of distinct platelet functions and being essential in primary and secondary hemostatic processes. Septin-knockout mouse studies show the relevance of septins in several aspects of hemostasis. This is in line with reports that dysregulation of septins is clinically relevant in human bleeding disorders. The precise function of septins in the biology of endothelial cells and platelets remains poorly understood. The following mini-review highlights the current knowledge about the role of septin cytoskeleton in regulating critical functions in these two cell types.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Vascular Endothelial Cell Biology: An Update

          The vascular endothelium, a monolayer of endothelial cells (EC), constitutes the inner cellular lining of arteries, veins and capillaries and therefore is in direct contact with the components and cells of blood. The endothelium is not only a mere barrier between blood and tissues but also an endocrine organ. It actively controls the degree of vascular relaxation and constriction, and the extravasation of solutes, fluid, macromolecules and hormones, as well as that of platelets and blood cells. Through control of vascular tone, EC regulate the regional blood flow. They also direct inflammatory cells to foreign materials, areas in need of repair or defense against infections. In addition, EC are important in controlling blood fluidity, platelet adhesion and aggregation, leukocyte activation, adhesion, and transmigration. They also tightly keep the balance between coagulation and fibrinolysis and play a major role in the regulation of immune responses, inflammation and angiogenesis. To fulfill these different tasks, EC are heterogeneous and perform distinctly in the various organs and along the vascular tree. Important morphological, physiological and phenotypic differences between EC in the different parts of the arterial tree as well as between arteries and veins optimally support their specified functions in these vascular areas. This review updates the current knowledge about the morphology and function of endothelial cells, particularly their differences in different localizations around the body paying attention specifically to their different responses to physical, biochemical and environmental stimuli considering the different origins of the EC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidative stress in angiogenesis and vascular disease.

            Despite the damaging effect on tissues at a high concentration, it has been gradually established that oxidative stress plays a positive role during angiogenesis. In adults, physiological or pathological angiogenesis is initiated by tissue demands for oxygen and nutrients, resulting in a hypoxia/reoxygenation cycle, which, in turn promotes the formation of reactive oxygen species (ROS). The ROS can be generated either endogenously, through mitochondrial electron transport chain reactions and nicotinamide adenine dinucleotide phosphate oxidase, or exogenously, resulting from exposure to environmental agents, such as ultraviolet or ionizing radiation. In many conditions, ROS promotes angiogenesis, either directly or via the generation of active oxidation products, including peroxidized lipids. The latter lipid metabolites are generated in excess during atherosclerosis, thereby linking atherogenic processes and pathological angiogenesis. Although the main mechanism of oxidative stress-induced angiogenesis involves hypoxia-inducible factor/vascular endothelial growth factor (VEGF) signaling, recent studies have identified several pathways that are VEGF-independent. This review aims to provide a summary of the past and present views on the role of oxidative stress as a mediator and modulator of angiogenesis, and to highlight newly identified mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamics of endothelial cell behavior in sprouting angiogenesis.

              The vertebrate body contains an extensive blood vessel network that forms, with a few exceptions, by endothelial sprouting from the existing vasculature. This process, termed angiogenesis, involves complex and highly dynamic interactions between endothelial cells and their environment. Pro-angiogenic signals, such as VEGF, promote endothelial motility, filopodia extension and proliferation, and, together with Notch signaling, controls whether specific endothelial cells become lead tip cells or trailing stalk cells. Sprouts then convert into endothelial tubules and form connections with other vessels, which requires the local suppression of motility and the formation of new cell-cell junctions. We here review the dynamics of angiogenesis in the context of key molecules and pathways controlling tip cell selection, sprouting and the formation of new vessels. Copyright © 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                11 November 2021
                2021
                : 9
                : 768409
                Affiliations
                Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
                Author notes

                Edited by: Manoj B. Menon, Indian Institute of Technology Delhi, India

                Reviewed by: Olga Vagin, UCLA David Geffen School of Medicine, United States

                Andrei Karginov, University of Illinois at Chicago, United States

                Michael Krauß, Leibniz-Institut für Molekulare Pharmakologie (FMP), Germany

                *Correspondence: Barbara Zieger, barbara.zieger@ 123456uniklinik-freiburg.de

                This article was submitted to Signaling, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                768409
                10.3389/fcell.2021.768409
                8632023
                34858990
                d2b8e079-d607-46fe-86a8-6fbdf45aa28b
                Copyright © 2021 Neubauer and Zieger.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 August 2021
                : 25 October 2021
                Funding
                Funded by: Deutsche Forschungsgemeinschaft , doi 10.13039/501100001659;
                Award ID: DFG/ZI486/4-1
                Categories
                Cell and Developmental Biology
                Mini Review

                septins,platelets,endothelial cells,angiogenesis,cell-cell junction,exocytosis,hemostasis

                Comments

                Comment on this article