2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Microbiome‐immune‐metabolic axis in the epidemic of childhood obesity: Evidence and opportunities

      1 , 1 , 1
      Obesity Reviews
      Wiley

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Obesity epidemic responsible for increase in diabetes, heart diseases, infections and cancer shows no signs of abating. Obesity in children is also on rise, indicating the urgent need of strategies for prevention and intervention that must begin in early life. While originally posited that obesity results from the simple concept of consuming more calories, or genetics, emerging research suggests that the bacteria living in our gut (gut microbiome) and its interactions with immune cells and metabolic organs including adipose tissues (microbiome-immune-metabolic axis) play significant role in obesity development in childhood. Specifically, abnormal changes (dysbiosis) in the gut microbiome, stimulation of inflammatory cytokines, and shifts in the metabolic functions of brown adipose tissue and the browning of white adipose tissue are associated with increased obesity. Many factors from as early as gestation appear to contribute in obesity, such as maternal health, diet, antibiotic use by mother and/or child, and birth and feeding methods. Herein, using evidence from animal and human studies, we discuss how these factors impact microbiome-immune-metabolic axis and cause obesity epidemic in children, and describe the gaps in knowledge that are warranted for future research.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling.

          Imbalances in glucose and energy homeostasis are at the core of the worldwide epidemic of obesity and diabetes. Here, we illustrate an important role of the TGF-β/Smad3 signaling pathway in regulating glucose and energy homeostasis. Smad3-deficient mice are protected from diet-induced obesity and diabetes. Interestingly, the metabolic protection is accompanied by Smad3(-)(/-) white adipose tissue acquiring the bioenergetic and gene expression profile of brown fat/skeletal muscle. Smad3(-/-) adipocytes demonstrate a marked increase in mitochondrial biogenesis, with a corresponding increase in basal respiration, and Smad3 acts as a repressor of PGC-1α expression. We observe significant correlation between TGF-β1 levels and adiposity in rodents and humans. Further, systemic blockade of TGF-β signaling protects mice from obesity, diabetes, and hepatic steatosis. Together, these results demonstrate that TGF-β signaling regulates glucose tolerance and energy homeostasis and suggest that modulation of TGF-β activity might be an effective treatment strategy for obesity and diabetes. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fetal origins of adult disease.

            Dr. David Barker first popularized the concept of fetal origins of adult disease (FOAD). Since its inception, FOAD has received considerable attention. The FOAD hypothesis holds that events during early development have a profound impact on one's risk for development of future adult disease. Low birth weight, a surrogate marker of poor fetal growth and nutrition, is linked to coronary artery disease, hypertension, obesity, and insulin resistance. Clues originally arose from large 20th century, European birth registries. Today, large, diverse human cohorts and various animal models have extensively replicated these original observations. This review focuses on the pathogenesis related to FOAD and examines Dr. David Barker's landmark studies, along with additional human and animal model data. Implications of the FOAD extend beyond the low birth weight population and include babies exposed to stress, both nutritional and nonnutritional, during different critical periods of development, which ultimately result in a disease state. By understanding FOAD, health care professionals and policy makers will make this issue a high health care priority and implement preventive measures and treatment for those at higher risk for chronic diseases. Copyright © 2011 Mosby, Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics.

              To investigate whether delivery mode (vaginal versus by caesarean section), maternal pre-pregnancy body mass index (BMI) and early exposure to antibiotics (<6 months of age) influence child's risk of overweight at age 7 years, hence supporting the hypotheses that environmental factors influencing the establishment and diversity of the gut microbiota are associated with later risk of overweight. Longitudinal, prospective study with measure of exposures in infancy and follow-up at age 7 years. A total of 28 354 mother-child dyads from the Danish National Birth Cohort, with information on maternal pre-pregnancy BMI, delivery mode and antibiotic administration in infancy, were assessed. Logistic regression analyses were performed with childhood height and weight at the 7-year follow-up as outcome measures. Delivery mode was not significantly associated with childhood overweight (odds ratio (OR):1.18, 95% confidence interval (CI): 0.95-1.47). Antibiotics during the first 6 months of life led to increased risk of overweight among children of normal weight mothers (OR: 1.54, 95% CI: 1.09-2.17) and a decreased risk of overweight among children of overweight mothers (OR: 0.54, 95% CI: 0.30-0.98). The same tendency was observed among children of obese mothers (OR: 0.85, 95% CI: 0.41-1.76). The present cohort study revealed that a combination of early exposures, including delivery mode, maternal pre-pregnancy BMI and antibiotics in infancy, influences the risk of overweight in later childhood. This effect may potentially be explained by an impact on establishment and diversity of the microbiota.
                Bookmark

                Author and article information

                Journal
                Obesity Reviews
                Obesity Reviews
                Wiley
                1467-7881
                1467-789X
                October 30 2019
                October 30 2019
                Affiliations
                [1 ]Department of Internal Medicine‐ Molecular Medicine, and Department of Microbiology and ImmunologyWake Forest School of Medicine Winston‐Salem NC USA
                Article
                10.1111/obr.12963
                7771488
                31663251
                d28774c2-de4e-4196-9cdc-b953c56f98eb
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#am

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article