19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Dysregulation of B Cell Repertoire Formation in Myasthenia Gravis Patients Revealed through Deep Sequencing

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">Myasthenia gravis (MG) is a prototypical B cell-mediated autoimmune disease affecting 20–50 per 100,000 people. The majority of patients fall into two clinically distinguishable types based on whether they produce autoantibodies targeting the acetylcholine receptor (AChR-MG) or muscle specific kinase (MuSK-MG). The autoantibodies are pathogenic, but whether their generation is associated with broader defects in the B cell repertoire is unknown. To address this question, we performed deep sequencing of the B cell receptor repertoire of AChR-MG, MuSK-MG and healthy subjects to generate approximately 518,000 unique VH and VL sequences from sorted naïve and memory B cell populations. AChR-MG and MuSK-MG subjects displayed distinct gene segment usage biases in both VH and VL sequences within the naïve and memory compartments. The memory compartment of AChR-MG was further characterized by reduced positive selection of somatic mutations in the H-CDR regions and altered H-CDR3 physicochemical properties. The VL repertoire of MuSK-MG was specifically characterized by reduced V/J segment distance in recombined sequences, suggesting diminished VL receptor editing during B cell development. Our results identify large-scale abnormalities in both the naïve and memory B cell repertoires. Particular abnormalities were unique to either AChR-MG or MuSK-MG indicating that the repertoires reflect the distinct properties of the subtypes. These repertoire abnormalities are consistent with previously observed defects in B cell tolerance checkpoints in MG, thereby offering additional insight regarding the impact of tolerance defects on peripheral autoimmune repertoires. These collective findings point toward a deformed B cell repertoire as a fundamental component of MG. </p>

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities.

          J. Xu, M Davis (2000)
          All rearranging antigen receptor genes have one or two highly diverse complementarity determining regions (CDRs) among the six that typically form the ligand binding surface. We report here that, in the case of antibodies, diversity at one of these regions, CDR3 of the V(H) domain, is sufficient to permit otherwise identical IgM molecules to distinguish between a variety of hapten and protein antigens. Furthermore, we find that somatic mutation can allow such antibodies to achieve surprisingly high affinities. These results are consistent with a model in which the highly diverse CDR3 loops are the key determinant of specificity in antigen recognition in both T cell receptors (TCR) and antibodies, whereas the germline-encoded CDR1 and CDR2 sequences are much more cross-reactive.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IMGT(®) tools for the nucleotide analysis of immunoglobulin (IG) and T cell receptor (TR) V-(D)-J repertoires, polymorphisms, and IG mutations: IMGT/V-QUEST and IMGT/HighV-QUEST for NGS.

            IMGT/V-QUEST is the highly customized and integrated online IMGT(®) tool for the standardized analysis of the immunoglobulin (IG) or antibody and T cell receptor (TR) rearranged nucleotide sequences. The analysis of these antigen receptors represents a crucial challenge for the study of the adaptive immune response in normal and disease-related situations. The expressed IG and TR repertoires represent a potential of 10(12) IG and 10(12) TR per individual. This huge diversity results from mechanisms that occur at the DNA level during the IG and TR molecular synthesis. These mechanisms include the combinatorial rearrangements of the variable (V), diversity (D) and joining (J) genes, the N-diversity (deletion and addition at random of nucleotides during the V-(D)-J rearrangement) and, for IG, somatic hypermutations. IMGT/V-QUEST identifies the V, D, J genes and alleles by alignment with the germline IG and TR gene and allele sequences of the IMGT reference directory. The tool describes the V-REGION mutations and identifies the hot spot positions in the closest germline V gene. IMGT/V-QUEST integrates IMGT/JunctionAnalysis for a detailed analysis of the V-J and V-D-J junctions and IMGT/Automat for a complete annotation of the sequences and also provides IMGT Collier de Perles. IMGT/HighV-QUEST, the high-throughput version of IMGT/V-QUEST, implemented to answer the needs of deep sequencing data analysis from Next Generation Sequencing (NGS), allows the analysis of thousands of IG and TR sequences in a single run. IMGT/V-QUEST and IMGT/HighV-QUEST are available at the IMGT(®) Home page, http://www.imgt.org.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              pRESTO: a toolkit for processing high-throughput sequencing raw reads of lymphocyte receptor repertoires.

              Driven by dramatic technological improvements, large-scale characterization of lymphocyte receptor repertoires via high-throughput sequencing is now feasible. Although promising, the high germline and somatic diversity, especially of B-cell immunoglobulin repertoires, presents challenges for analysis requiring the development of specialized computational pipelines. We developed the REpertoire Sequencing TOolkit (pRESTO) for processing reads from high-throughput lymphocyte receptor studies. pRESTO processes raw sequences to produce error-corrected, sorted and annotated sequence sets, along with a wealth of metrics at each step. The toolkit supports multiplexed primer pools, single- or paired-end reads and emerging technologies that use single-molecule identifiers. pRESTO has been tested on data generated from Roche and Illumina platforms. It has a built-in capacity to parallelize the work between available processors and is able to efficiently process millions of sequences generated by typical high-throughput projects.
                Bookmark

                Author and article information

                Journal
                The Journal of Immunology
                J.I.
                The American Association of Immunologists
                0022-1767
                1550-6606
                February 06 2017
                February 15 2017
                : 198
                : 4
                : 1460-1473
                Article
                10.4049/jimmunol.1601415
                5296243
                28087666
                d282eb5a-00c5-44da-8692-76c114c511b4
                © 2017
                History

                Comments

                Comment on this article