60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endothelial Dicer promotes atherosclerosis and vascular inflammation by miRNA-103-mediated suppression of KLF4

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MicroRNAs regulate the maladaptation of endothelial cells (ECs) to naturally occurring disturbed blood flow at arterial bifurcations resulting in arterial inflammation and atherosclerosis in response to hyperlipidemic stress. Here, we show that reduced endothelial expression of the RNAse Dicer, which generates almost all mature miRNAs, decreases monocyte adhesion, endothelial C–X–C motif chemokine 1 (CXCL1) expression, atherosclerosis and the lesional macrophage content in apolipoprotein E knockout mice ( Apoe −/−) after exposure to a high-fat diet. Endothelial Dicer deficiency reduces the expression of unstable miRNAs, such as miR-103, and promotes Krüppel-like factor 4 (KLF4)-dependent gene expression in murine atherosclerotic arteries. MiR-103 mediated suppression of KLF4 increases monocyte adhesion to ECs by enhancing nuclear factor-κB-dependent CXCL1 expression. Inhibiting the interaction between miR-103 and KLF4 reduces atherosclerosis, lesional macrophage accumulation and endothelial CXCL1 expression. Overall, our study suggests that Dicer promotes endothelial maladaptation and atherosclerosis in part by miR-103-mediated suppression of KLF4.

          Abstract

          The RNAse III endonuclease Dicer is crucial for processing of pre-miRNAs in health and disease. Here the authors show that endothelial Dicer promotes atherosclerosis by increasing miR-103 levels leading to suppression of the anti-inflammatory transcription factor KLF4, thus suggesting a novel approach to treat this disease.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of microRNA biogenesis.

          Minju Ha, V Kim (2014)
          MicroRNAs (miRNAs) are small non-coding RNAs that function as guide molecules in RNA silencing. Targeting most protein-coding transcripts, miRNAs are involved in nearly all developmental and pathological processes in animals. The biogenesis of miRNAs is under tight temporal and spatial control, and their dysregulation is associated with many human diseases, particularly cancer. In animals, miRNAs are ∼22 nucleotides in length, and they are produced by two RNase III proteins--Drosha and Dicer. miRNA biogenesis is regulated at multiple levels, including at the level of miRNA transcription; its processing by Drosha and Dicer in the nucleus and cytoplasm, respectively; its modification by RNA editing, RNA methylation, uridylation and adenylation; Argonaute loading; and RNA decay. Non-canonical pathways for miRNA biogenesis, including those that are independent of Drosha or Dicer, are also emerging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dicer is essential for mouse development.

            To address the biological function of RNA interference (RNAi)-related pathways in mammals, we disrupted the gene Dicer1 in mice. Loss of Dicer1 lead to lethality early in development, with Dicer1-null embryos depleted of stem cells. Coupled with our inability to generate viable Dicer1-null embryonic stem (ES) cells, this suggests a role for Dicer, and, by implication, the RNAi machinery, in maintaining the stem cell population during early mouse development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impaired microRNA processing enhances cellular transformation and tumorigenesis.

              MicroRNAs (miRNAs) are a new class of small noncoding RNAs that post-transcriptionally regulate the expression of target mRNA transcripts. Many of these target mRNA transcripts are involved in proliferation, differentiation and apoptosis, processes commonly altered during tumorigenesis. Recent work has shown a global decrease of mature miRNA expression in human cancers. However, it is unclear whether this global repression of miRNAs reflects the undifferentiated state of tumors or causally contributes to the transformed phenotype. Here we show that global repression of miRNA maturation promotes cellular transformation and tumorigenesis. Cancer cells expressing short hairpin RNAs (shRNAs) targeting three different components of the miRNA processing machinery showed a substantial decrease in steady-state miRNA levels and a more pronounced transformed phenotype. In animals, miRNA processing-impaired cells formed tumors with accelerated kinetics. These tumors were more invasive than control tumors, suggesting that global miRNA loss enhances tumorigenesis. Furthermore, conditional deletion of Dicer1 enhanced tumor development in a K-Ras-induced mouse model of lung cancer. Overall, these studies indicate that abrogation of global miRNA processing promotes tumorigenesis.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                03 February 2016
                2016
                : 7
                : 10521
                Affiliations
                [1 ]Institute for Cardiovascular Prevention, Ludwig-Maximilians University Munich , Pettenkoferstrasse 9, 80336 Munich, Germany
                [2 ]Institute for Molecular Cardiovascular Research, RWTH Aachen University , Pauwelsstrasse 30, 52074 Aachen, Germany
                [3 ]DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance , Biedersteiner Strasse 29, 80802 Munich, Germany
                [4 ]European Vascular Center Aachen-Maastricht, Medical University Maastricht , P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
                [5 ]European Vascular Center Aachen-Maastricht, RWTH Aachen University , Pauwelsstrasse 30, 52074 Aachen, Germany
                Author notes
                Article
                ncomms10521
                10.1038/ncomms10521
                4742841
                26837267
                d27dc0bb-7e32-4ed0-aaad-ef87863413bc
                Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 26 October 2015
                : 22 December 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article