17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of light intensities and varying watering intervals on growth, tissue nutrient content and antifungal activity of hydroponic cultivated Tulbaghia violacea L. under greenhouse conditions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Optimization of the quality and quantity of medicinal materials during cultivation could improve the value of medicinal plants. Light intensity and water availability affect physiological processes and growth of plants. Tulbaghia violacea L. (Alliaceae) bulbs and leaves are widely used traditionally in southern Africa for treatments of many ailments. The interactive effects of light intensity and watering regime on plant growth, nutrient uptake and antifungal activity of T. violacea were evaluated in the current study. Seedlings of T. violacea were grown hydroponically under two shading levels (0% and 40%) while being exposed simultaneously to one of three watering intervals: 5-day, 14-day and 21-day. Different growth parameters (plant height, plant fresh and dry weights) and tissue nutrient contents were evaluated at the end of the experiment. The antifungal activity of acetone extracts on Fusarium oxysporum were evaluated in a microdilution bioassay. Generally, significantly higher concentrations of macronutrients were recorded in the tissue of plants exposed to shorter watering interval. The results showed that different watering frequencies and light intensities significantly (p < 0.05) influenced plant growth parameters (height, and dry and fresh weights). Moreover, there were strong interactive effects of watering frequency and light intensity on most of the plant growth parameters. Remarkably, plants that were simultaneously exposed to the extended watering interval (21-day) and low light intensity showed the best anti- F. oxysporum activity. Key findings of this study revealed that shading alleviated the negative effects of water-deficit stress on plant growth and improved antifungal activity.

          Abstract

          Agriculture; Biotechnology; Plant biology; Agricultural Water Management; Horticulture; Watering regimes; light intensity; Tulbaghia violacea; antifungal activities.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Photosynthesis and drought: can we make metabolic connections from available data?

          Photosynthesis is one of the key processes to be affected by water deficits, via decreased CO2 diffusion to the chloroplast and metabolic constraints. The relative impact of those limitations varies with the intensity of the stress, the occurrence (or not) of superimposed stresses, and the species we are dealing with. Total plant carbon uptake is further reduced due to the concomitant or even earlier inhibition of growth. Leaf carbohydrate status, altered directly by water deficits or indirectly (via decreased growth), acts as a metabolic signal although its role is not totally clear. Other relevant signals acting under water deficits comprise: abscisic acid (ABA), with an impact on stomatal aperture and the regulation at the transcription level of a large number of genes related to plant stress response; other hormones that act either concurrently (brassinosteroids, jasmonates, and salycilic acid) or antagonistically (auxin, cytokinin, or ethylene) with ABA; and redox control of the energy balance of photosynthetic cells deprived of CO2 by stomatal closure. In an attempt to systematize current knowledge on the complex network of interactions and regulation of photosynthesis in plants subjected to water deficits, a meta-analysis has been performed covering >450 papers published in the last 15 years. This analysis shows the interplay of sugars, reactive oxygen species (ROS), and hormones with photosynthetic responses to drought, involving many metabolic events. However, more significantly it highlights (i) how fragmented and often non-comparable the results are and (ii) how hard it is to relate molecular events to plant physiological status, namely photosynthetic activity, and to stress intensity. Indeed, the same data set usually does not integrate these different levels of analysis. Considering these limitations, it was hard to find a general trend, particularly concerning molecular responses to drought, with the exception of the genes ABI1 and ABI3. These genes, irrespective of the stress type (acute versus chronic) and intensity, show a similar response to water shortage in the two plant systems analysed (Arabidopsis and barley). Both are associated with ABA-mediated metabolic responses to stress and the regulation of stomatal aperture. Under drought, ABI1 transcription is up-regulated while ABI3 is usually down-regulated. Recently ABI3 has been hypothesized to be essential for successful drought recovery.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Production of plant secondary metabolites: a historical perspective

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Which extractant should be used for the screening and isolation of antimicrobial components from plants?

              J.N. Eloff (1998)
              Freeze dried and finely ground leaves of two plants with known antimicrobial activity, Anthocleista grandiflora and Combretum erythrophyllum were extracted with acetone, ethanol, methanol, methylenedichloride, methanol/chloroform/water and water at a 1 to 10 ratio in each case. The quantity and diversity of compounds extracted, number of inhibitors extracted, rate of extraction, toxicity in a bioassay, ease of removal of solvent and biological hazard were evaluated for each extractant. An arbitrary scoring system was developed to evaluate the above parameters for the different extractants. Acetone gave the best results with these plants with an arbitrary value of 102 followed by methanol/chloroform/water (81), methylene dichloride (79), methanol (71), ethanol (58) and water (47). Four five minute sequential extractions of very finely ground A. grandiflora shaking at a high rate extracted 97% of the total antimicrobial activity.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                17 May 2020
                May 2020
                17 May 2020
                : 6
                : 5
                : e03906
                Affiliations
                [1]Department of Horticulture Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, Symphony Way, Bellville, 7535, Cape Town, South Africa
                Author notes
                []Corresponding author. felixnchu@ 123456gmail.com
                Article
                S2405-8440(20)30751-9 e03906
                10.1016/j.heliyon.2020.e03906
                7235940
                d2796d69-4d52-443c-86e7-579552cc7fe0
                © 2020 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 8 May 2019
                : 28 June 2019
                : 29 April 2020
                Categories
                Article

                agriculture,biotechnology,plant biology,agricultural water management,horticulture,watering regimes,light intensity,tulbaghia violacea,antifungal activities

                Comments

                Comment on this article