11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Characterization of the adsorption of oligonucleotides on mercaptopropionic acid-coated CdSe/ZnS quantum dots using fluorescence resonance energy transfer

      ,
      Journal of Colloid and Interface Science
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Semiconductor quantum dots (QDs) coated with thioalkyl acid ligands are often used as probes and reporters for nucleic acid sensing, or protein sensing using aptamers, and are also potential vectors for gene delivery. In such applications, the interactions that potentially lead to the adsorption of oligonucleotides onto the surface of colloidal QDs are an important consideration. To explore such interactions, fluorescence resonance energy transfer (FRET) between QDs and oligonucleotides labeled with a fluorescent dye was used to identify and characterize a set of conditions that favor strong adsorption on 3-mercaptopropionic acid (MPA)-coated CdSe/ZnS QDs. Adsorption curves and competitive binding experiments were used to determine that the order of affinity for nucleobase adsorption was dC>dA≥dG≫dT. The length of the oligonucleotide sequence was also important, with an 80-mer sequence adsorbing more strongly than its 20-mer analog. Adsorption decreased with increasing pH and corresponded to the ionization of the carboxylic acid groups of the MPA ligands. Increased ionic strength partially offsets ligand ionization and increased the extent of adsorption. The interaction between QDs and oligonucleotides was labile, with increases in adsorption at lower concentrations of oligonucleotide and with an increasing number of oligonucleotides per QD. The results were consistent with a hydrogen-bonding model for adsorption, where neutral thioalkyl acid ligands interact favorably with nucleobases and ionized ligands resist adsorption.

          Related collections

          Author and article information

          Journal
          Journal of Colloid and Interface Science
          Journal of Colloid and Interface Science
          Elsevier BV
          00219797
          July 2011
          July 2011
          : 359
          : 1
          : 148-154
          Article
          10.1016/j.jcis.2011.03.058
          21486671
          d278173e-52b9-4860-9534-5c5e1e59ab8a
          © 2011

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article