1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rapid identification of moxa wool storage period based on hyperspectral imaging technology and machine learning

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Moxa wool (MW), derived from the dried leaves of A r t e m i s i a a r g y i , plays a significant role in traditional Chinese medicine. However, the quality of MW varies with its storage period, impacting its therapeutic efficacy. Traditional methods for quality detection are limited and destructive. To address this, we propose a non-destructive detection method using hyperspectral imaging technology and machine learning algorithms to accurately identify the storage period of MW. Nevertheless, hyperspectral data poses challenges due to its high dimensionality and redundancy, leading to increased computational complexity. To overcome this, we employed principal component analysis (PCA), competitive adaptive reweighted sampling (CARS), and successive projection algorithm (SPA) for data dimensionality reduction and wavelength selection. The results demonstrate that these techniques significantly enhance the accuracy of MW storage year identification. For Nanyang MW, the CARS+SVM model achieved the highest accuracy rates of 99.8% in the visible-near-infrared (VNIR) range and 99.55% in the shortwave infrared (SWIR) range. Similarly, for Qichun MW, the SPA+SVM model achieved identification accuracies of 99.78% and 99.47% in the VNIR and SWIR ranges, respectively. This research provides valuable insights into the rapid detection of MW quality by indication of storage years and presents a novel approach for quality control of MW in the field of traditional Chinese medicine. The combination of hyperspectral imaging and machine learning offers a promising solution for efficient and accurate MW identification, contributing to the advancement of traditional medicine practices.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          Random forest in remote sensing: A review of applications and future directions

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            ETCM: an encyclopaedia of traditional Chinese medicine

            Abstract Traditional Chinese medicine (TCM) is not only an effective solution for primary health care, but also a great resource for drug innovation and discovery. To meet the increasing needs for TCM-related data resources, we developed ETCM, an Encyclopedia of Traditional Chinese Medicine. ETCM includes comprehensive and standardized information for the commonly used herbs and formulas of TCM, as well as their ingredients. The herb basic property and quality control standard, formula composition, ingredient drug-likeness, as well as many other information provided by ETCM can serve as a convenient resource for users to obtain thorough information about a herb or a formula. To facilitate functional and mechanistic studies of TCM, ETCM provides predicted target genes of TCM ingredients, herbs, and formulas, according to the chemical fingerprint similarity between TCM ingredients and known drugs. A systematic analysis function is also developed in ETCM, which allows users to explore the relationships or build networks among TCM herbs, formulas,ingredients, gene targets, and related pathways or diseases. ETCM is freely accessible at http://www.nrc.ac.cn:9090/ETCM/. We expect ETCM to develop into a major data warehouse for TCM and to promote TCM related researches and drug development in the future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration.

              By employing the simple but effective principle 'survival of the fittest' on which Darwin's Evolution Theory is based, a novel strategy for selecting an optimal combination of key wavelengths of multi-component spectral data, named competitive adaptive reweighted sampling (CARS), is developed. Key wavelengths are defined as the wavelengths with large absolute coefficients in a multivariate linear regression model, such as partial least squares (PLS). In the present work, the absolute values of regression coefficients of PLS model are used as an index for evaluating the importance of each wavelength. Then, based on the importance level of each wavelength, CARS sequentially selects N subsets of wavelengths from N Monte Carlo (MC) sampling runs in an iterative and competitive manner. In each sampling run, a fixed ratio (e.g. 80%) of samples is first randomly selected to establish a calibration model. Next, based on the regression coefficients, a two-step procedure including exponentially decreasing function (EDF) based enforced wavelength selection and adaptive reweighted sampling (ARS) based competitive wavelength selection is adopted to select the key wavelengths. Finally, cross validation (CV) is applied to choose the subset with the lowest root mean square error of CV (RMSECV). The performance of the proposed procedure is evaluated using one simulated dataset together with one near infrared dataset of two properties. The results reveal an outstanding characteristic of CARS that it can usually locate an optimal combination of some key wavelengths which are interpretable to the chemical property of interest. Additionally, our study shows that better prediction is obtained by CARS when compared to full spectrum PLS modeling, Monte Carlo uninformative variable elimination (MC-UVE) and moving window partial least squares regression (MWPLSR).
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                11 September 2024
                30 September 2024
                11 September 2024
                : 10
                : 18
                : e37650
                Affiliations
                [a ]School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, China
                [b ]Research Center for Intelligent Science and Engineering Technology of Traditional Chinese Medicine, Zhengzhou University, Zhengzhou 450001, Henan, China
                [c ]China Academy of Chinese Medical Sciences, Beijing 100020, China
                Author notes
                [1]

                Huiqiang Hu and Yunlong Mei contributed equally to this work and should be considered co-first authors.

                Article
                S2405-8440(24)13681-X e37650
                10.1016/j.heliyon.2024.e37650
                11422583
                39323837
                d26f9747-29f3-49ff-b8aa-f4387b21dc92
                © 2024 The Authors

                This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

                History
                : 20 April 2024
                : 5 September 2024
                : 6 September 2024
                Categories
                Research Article

                moxa wool,hyperspectral imaging technology,storage period,machine learning

                Comments

                Comment on this article