There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Summary Background Total joint replacements for end-stage osteoarthritis of the hip and knee are cost-effective and demonstrate significant clinical improvement. However, robust population based lifetime-risk data for implant revision are not available to aid patient decision making, which is a particular problem in young patient groups deciding on best-timing for surgery. Methods We did implant survival analysis on all patients within the Clinical Practice Research Datalink who had undergone total hip replacement or total knee replacement. These data were adjusted for all-cause mortality with data from the Office for National Statistics and used to generate lifetime risks of revision surgery based on increasing age at the time of primary surgery. Findings We identified 63 158 patients who had undergone total hip replacement and 54 276 who had total knee replacement between Jan 1, 1991, and Aug 10, 2011, and followed up these patients to a maximum of 20 years. For total hip replacement, 10-year implant survival rate was 95·6% (95% CI 95·3–95·9) and 20-year rate was 85·0% (83·2–86·6). For total knee replacement, 10-year implant survival rate was 96·1% (95·8–96·4), and 20-year implant survival rate was 89·7% (87·5–91·5). The lifetime risk of requiring revision surgery in patients who had total hip replacement or total knee replacement over the age of 70 years was about 5% with no difference between sexes. For those who had surgery younger than 70 years, however, the lifetime risk of revision increased for younger patients, up to 35% (95% CI 30·9–39·1) for men in their early 50s, with large differences seen between male and female patients (15% lower for women in same age group). The median time to revision for patients who had surgery younger than age 60 was 4·4 years. Interpretation Our study used novel methodology to investigate and offer new insight into the importance of young age and risk of revision after total hip or knee replacement. Our evidence challenges the increasing trend for more total hip replacements and total knee replacements to be done in the younger patient group, and these data should be offered to patients as part of the shared decision making process. Funding Oxford Musculoskeletal Biomedical Research Unit, National Institute for Health Research.
Summary Background Knee replacements are the mainstay of treatment for end-stage osteoarthritis and are effective. Given time, all knee replacements will fail and knowing when this failure might happen is important. We aimed to establish how long a knee replacement lasts. Methods In this systematic review and meta-analysis, we searched MEDLINE and Embase for case series and cohort studies published from database inception until July 21, 2018. Articles reporting 15 year or greater survival of primary total knee replacement (TKR), unicondylar knee replacement (UKR), and patellofemoral replacements in patients with osteoarthritis were included. Articles that reviewed specifically complex primary surgeries or revisions were excluded. Survival and implant data were extracted, with all-cause survival of the knee replacement construct being the primary outcome. We also reviewed national joint replacement registry reports and extracted the data to be analysed separately. In the meta-analysis, we weighted each series and calculated a pooled survival estimate for each data source at 15 years, 20 years, and 25 years, using a fixed-effects model. This study is registered with PROSPERO, number CRD42018105188. Findings From 4363 references found by our initial search, we identified 33 case series in 30 eligible articles, which reported all-cause survival for 6490 TKRs (26 case series) and 742 UKRs (seven case series). No case series reporting on patellofemoral replacements met our inclusion criteria, and no case series reported 25 year survival for TKR. The estimated 25 year survival for UKR (based on one case series) was 72·0% (95% CI 58·0–95·0). Registries contributed 299 291 TKRs (47 series) and 7714 UKRs (five series). The pooled registry 25 year survival of TKRs (14 registries) was 82·3% (95% CI 81·3–83·2) and of UKRs (four registries) was 69·8% (67·6–72·1). Interpretation Our pooled registry data, which we believe to be more accurate than the case series data, shows that approximately 82% of TKRs last 25 years and 70% of UKRs last 25 years. These findings will be of use to patients and health-care providers; further information is required to predict exactly how long specific knee replacements will last. Funding The National Joint Registry for England, Wales, Northern Ireland, and Isle of Man and the Royal College of Surgeons of England.
The purpose of this study was to determine the frequency and cause of failure after total knee arthroplasty and compare the results with those reported by our similar investigation conducted 10 years ago. A total of 781 revision TKAs performed at our institution over the past 10 years were identified. The most common failure mechanisms were: loosening (39.9%), infection (27.4%), instability (7.5%), periprosthetic fracture (4.7%), and arthrofibrosis (4.5%). Infection was the most common failure mechanism for early revision (<2 years from primary) and aseptic loosening was the most common reason for late revision. Polyethylene (PE) wear was no longer the major cause of failure. Compared to our previous report, the percentage of revisions performed for polyethylene wear, instability, arthrofibrosis, malalignment and extensor mechanism deficiency has decreased.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.