8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Distributed ARIMA Models for Ultra-long Time Series

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Providing forecasts for ultra-long time series plays a vital role in various activities, such as investment decisions, industrial production arrangements, and farm management. This paper develops a novel distributed forecasting framework to tackle challenges associated with forecasting ultra-long time series by utilizing the industry-standard MapReduce framework. The proposed model combination approach facilitates distributed time series forecasting by combining the local estimators of ARIMA (AutoRegressive Integrated Moving Average) models delivered from worker nodes and minimizing a global loss function. In this way, instead of unrealistically assuming the data generating process (DGP) of an ultra-long time series stays invariant, we make assumptions only on the DGP of subseries spanning shorter time periods. We investigate the performance of the proposed distributed ARIMA models on an electricity demand dataset. Compared to ARIMA models, our approach results in significantly improved forecasting accuracy and computational efficiency both in point forecasts and prediction intervals, especially for longer forecast horizons. Moreover, we explore some potential factors that may affect the forecasting performance of our approach.

          Related collections

          Author and article information

          Journal
          18 July 2020
          Article
          2007.09577
          d21c25a2-53f3-4842-942f-8e162132d8f5

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          stat.AP stat.CO

          Applications,Mathematical modeling & Computation
          Applications, Mathematical modeling & Computation

          Comments

          Comment on this article