30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improved Activity of a Thermophilic Cellulase, Cel5A, from Thermotoga maritima on Ionic Liquid Pretreated Switchgrass

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ionic liquid pretreatment of biomass has been shown to greatly reduce the recalcitrance of lignocellulosic biomass, resulting in improved sugar yields after enzymatic saccharification. However, even under these improved saccharification conditions the cost of enzymes still represents a significant proportion of the total cost of producing sugars and ultimately fuels from lignocellulosic biomass. Much of the high cost of enzymes is due to the low catalytic efficiency and stability of lignocellulolytic enzymes, especially cellulases, under conditions that include high temperatures and the presence of residual pretreatment chemicals, such as acids, organic solvents, bases, or ionic liquids. Improving the efficiency of the saccharification process on ionic liquid pretreated biomass will facilitate reduced enzyme loading and cost. Thermophilic cellulases have been shown to be stable and active in ionic liquids but their activity is typically at lower levels. Cel5A_ Tma, a thermophilic endoglucanase from Thermotoga maritima, is highly active on cellulosic substrates and is stable in ionic liquid environments. Here, our motivation was to engineer mutants of Cel5A_ Tma with higher activity on 1-ethyl-3-methylimidazolium acetate ([C 2mim][OAc]) pretreated biomass. We developed a robotic platform to screen a random mutagenesis library of Cel5A_ Tma. Twelve mutants with 25–42% improvement in specific activity on carboxymethyl cellulose and up to 30% improvement on ionic-liquid pretreated switchgrass were successfully isolated and characterized from a library of twenty thousand variants. Interestingly, most of the mutations in the improved variants are located distally to the active site on the protein surface and are not directly involved with substrate binding.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Microbial production of fatty-acid-derived fuels and chemicals from plant biomass.

          Increasing energy costs and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. Major efforts to this end are focused on the microbial production of high-energy fuels by cost-effective 'consolidated bioprocesses'. Fatty acids are composed of long alkyl chains and represent nature's 'petroleum', being a primary metabolite used by cells for both chemical and energy storage functions. These energy-rich molecules are today isolated from plant and animal oils for a diverse set of products ranging from fuels to oleochemicals. A more scalable, controllable and economic route to this important class of chemicals would be through the microbial conversion of renewable feedstocks, such as biomass-derived carbohydrates. Here we demonstrate the engineering of Escherichia coli to produce structurally tailored fatty esters (biodiesel), fatty alcohols, and waxes directly from simple sugars. Furthermore, we show engineering of the biodiesel-producing cells to express hemicellulases, a step towards producing these compounds directly from hemicellulose, a major component of plant-derived biomass.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deconstruction of lignocellulosic biomass to fuels and chemicals.

            Plants represent a vast, renewable resource and are well suited to provide sustainably for humankind's transportation fuel needs. To produce infrastructure-compatible fuels from biomass, two challenges remain: overcoming plant cell wall recalcitrance to extract sugar and phenolic intermediates, and reduction of oxygenated intermediates to fuel molecules. To compete with fossil-based fuels, two primary routes to deconstruct cell walls are under development, namely biochemical and thermochemical conversion. Here, we focus on overcoming recalcitrance with biochemical conversion, which uses low-severity thermochemical pretreatment followed by enzymatic hydrolysis to produce soluble sugars. Many challenges remain, including understanding how pretreatments affect the physicochemical nature of heterogeneous cell walls; determination of how enzymes deconstruct the cell wall effectively with the aim of designing superior catalysts; and resolution of issues associated with the co-optimization of pretreatment, enzymatic hydrolysis, and fermentation. Here, we highlight some of the scientific challenges and open questions with a particular focus on problems across multiple length scales.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Outlook for cellulase improvement: screening and selection strategies.

              Cellulose is the most abundant renewable natural biological resource, and the production of biobased products and bioenergy from less costly renewable lignocellulosic materials is important for the sustainable development of human beings. A reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. Here, we review quantitative cellulase activity assays using soluble and insoluble substrates, and focus on their advantages and limitations. Because there are no clear relationships between cellulase activities on soluble substrates and those on insoluble substrates, soluble substrates should not be used to screen or select improved cellulases for processing relevant solid substrates, such as plant cell walls. Cellulase improvement strategies based on directed evolution using screening on soluble substrates have been only moderately successful, and have primarily targeted improvement in thermal tolerance. Heterogeneity of insoluble cellulose, unclear dynamic interactions between insoluble substrate and cellulase components, and the complex competitive and/or synergic relationship among cellulase components limit rational design and/or strategies, depending on activity screening approaches. Herein, we hypothesize that continuous culture using insoluble cellulosic substrates could be a powerful selection tool for enriching beneficial cellulase mutants from the large library displayed on the cell surface.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                14 November 2013
                : 8
                : 11
                : e79725
                Affiliations
                [1 ]Deconstruction Division, Joint BioEnergy Institute, Emeryville, California, United States of America
                [2 ]Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, California, United States of America
                [3 ]Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
                [4 ]Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
                [5 ]Department of Bioengineering, University of California, Berkeley, California, United States of America
                University of Nottingham, United Kingdom
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ZC SS PDA RS MZH BAS KLS. Performed the experiments: ZC JHP DD HL HMT NSYH. Analyzed the data: ZC JHP HL MZH BAS KLS. Contributed reagents/materials/analysis tools: PDA MZH BAS KLS. Wrote the paper: ZC JHP HL BAS KLS.

                [¤a]

                Current address: Illumina, Inc., San Diego, California, United States of America

                [¤b]

                Current address: Life Technologies, Corp., Foster City, California, United States of America

                [¤c]

                Current address: Keck Graduate Institute, Claremont, California, United States of America

                [¤d]

                Current address: Janssen Pharmaceutical Inc., Titusville, New Jersey, United States of America

                [¤e]

                Current address: NASA Ames Research Center, Moffett Field, California, United States of America

                Article
                PONE-D-13-10870
                10.1371/journal.pone.0079725
                3828181
                24244549
                d2082aff-ec7e-4a0a-99f2-406efb0f397d
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 14 March 2013
                : 4 October 2013
                Page count
                Pages: 9
                Funding
                This work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This project also received support from the Defense Threat Reduction Agency-Joint Science and Technology Office for Chemical and Biological Defense under Grant No. B0946381. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content258

                Cited by10

                Most referenced authors1,214