13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Arsenic trioxide and angiotensin II have inhibitory effects on HERG protein expression: Evidence for the role of PML SUMOylation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The human ether-a-go-go-related gene (HERG) channel is a novel target for the treatment of drug-induced long QT syndrome, which causes lethal cardiotoxicity. This study is designed to explore the possible role of PML SUMOylation and its associated nuclear bodies (NBs) in the regulation of HERG protein expression. Both arsenic trioxide (ATO) and angiotensin II (Ang II) were able to significantly reduce HERG protein expression, while also increasing PML SUMOylation and accelerating the formation of PML-NBs. Pre-exposure of cardiomyocytes to a SUMOylation chemical inhibitor, ginkgolic acid, or the silencing of UBC9 suppressed PML SUMOylation, subsequently preventing the downregulation of HERG induced by ATO or Ang II. Conversely, knockdown of RNF4 led to a remarkable increase in PML SUMOylation and the function of PML-NBs, further promoting ATO- or Ang II-induced HERG protein downregulation. Mechanistically, an increase in PML SUMOylation by ATO or Ang II dramatically enhanced the formation of PML and Pin1 complexes in PML-NBs, leading to the upregulation of TGF-β1 protein, eventually inhibiting HERG expression through activation of protein kinase A. The present work uncovered a novel molecular mechanism underlying HERG protein expression and indicated that PML SUMOylation is a critical step in the development of drug-acquired arrhythmia.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          hERG potassium channels and cardiac arrhythmia.

          hERG potassium channels are essential for normal electrical activity in the heart. Inherited mutations in the HERG gene cause long QT syndrome, a disorder that predisposes individuals to life-threatening arrhythmias. Arrhythmia can also be induced by a blockage of hERG channels by a surprisingly diverse group of drugs. This side effect is a common reason for drug failure in preclinical safety trials. Insights gained from the crystal structures of other potassium channels have helped our understanding of the block of hERG channels and the mechanisms of gating.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML.

            Arsenic, an ancient drug used in traditional Chinese medicine, has attracted worldwide interest because it shows substantial anticancer activity in patients with acute promyelocytic leukemia (APL). Arsenic trioxide (As2O3) exerts its therapeutic effect by promoting degradation of an oncogenic protein that drives the growth of APL cells, PML-RARalpha (a fusion protein containing sequences from the PML zinc finger protein and retinoic acid receptor alpha). PML and PML-RARalpha degradation is triggered by their SUMOylation, but the mechanism by which As2O3 induces this posttranslational modification is unclear. Here we show that arsenic binds directly to cysteine residues in zinc fingers located within the RBCC domain of PML-RARalpha and PML. Arsenic binding induces PML oligomerization, which increases its interaction with the small ubiquitin-like protein modifier (SUMO)-conjugating enzyme UBC9, resulting in enhanced SUMOylation and degradation. The identification of PML as a direct target of As2O3 provides new insights into the drug's mechanism of action and its specificity for APL.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway.

              In acute promyelocytic leukaemia (APL), arsenic trioxide induces degradation of the fusion protein encoded by the PML-RARA oncogene, differentiation of leukaemic cells and produces clinical remissions. SUMOylation of its PML moiety was previously implicated, but the nature of the degradation pathway involved and the role of PML-RARalpha catabolism in the response to therapy have both remained elusive. Here, we demonstrate that arsenic-induced PML SUMOylation triggers its Lys 48-linked polyubiquitination and proteasome-dependent degradation. When exposed to arsenic, SUMOylated PML recruits RNF4, the human orthologue of the yeast SUMO-dependent E3 ubiquitin-ligase, as well as ubiquitin and proteasomes onto PML nuclear bodies. Arsenic-induced differentiation is impaired in cells transformed by a non-degradable PML-RARalpha SUMOylation mutant or in APL cells transduced with a dominant-negative RNF4, directly implicating PML-RARalpha catabolism in the therapeutic response. We thus identify PML as the first protein degraded by SUMO-dependent polyubiquitination. As PML SUMOylation recruits not only RNF4, ubiquitin and proteasomes, but also many SUMOylated proteins onto PML nuclear bodies, these domains could physically integrate the SUMOylation, ubiquitination and degradation pathways.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                11 July 2017
                2 May 2017
                : 8
                : 28
                : 45447-45458
                Affiliations
                1 Department of Pharmacology, The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University at Harbin, Heilongjiang 150081, P. R. China
                2 Department of Clinical Pharmacy, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, The 2nd Affiliated Hospital, Harbin Medical University at Harbin, Heilongjiang 150081, P. R. China
                3 Department of Oral and Maxillofacial Surgery, The 2nd Affiliated Hospital, Harbin Medical University at Harbin, Heilongjiang 150081, P. R. China
                Author notes
                Correspondence to: Wen-Feng Chu, cwf76928@ 123456aliyun.com
                Article
                17563
                10.18632/oncotarget.17563
                5542199
                28525371
                d1ee7796-e884-48f5-9c93-3933ea5d9852
                Copyright: © 2017 Liu et al.

                This article is distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 12 October 2016
                : 17 April 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                cardiotoxicity,human ether-a-go-go-related gene,transforming growth factor β1,pml nuclear body,sumoylation

                Comments

                Comment on this article