32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of 3D Printing Individualized Ankle-Foot Orthosis on Plantar Biomechanics and Pain in Patients with Plantar Fasciitis: A Randomized Controlled Trial

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Traditional ankle-foot orthoses (AFOs) are not effective in treating plantar fasciitis, while customized 3-dimensional (3D) printed ankle-foot orthoses are effective in treating many ankle-foot diseases. This study investigated the effects of customized 3D printed AFOs on biomechanics and comfort of the plantar foot in plantar fasciitis.

          Material/Methods

          Sixty patients with bilateral plantar fasciitis aged 31–60 years participated in this study. At week 0, patients were randomly assigned into 2 groups: the control group consisting of those wearing separate shoes with prefabricated AFOs; and the experimental group consisting of those wearing a separate shoe and customized 3D-printed AFO. The Footscan ® system recorded maximum pressure, maximum strength, and contact area of patients’ hallux, toes 2–5, first to fifth metatarsal, midfoot, lateral heel, and midfoot heel at weeks 0 and 8. Patients used visual analogue scale scores at weeks 0 and 8 to assess overall comfort of foot orthosis, to determine the credibility and comfort of both orthopedic insole conditions.

          Results

          At week 0, in the experimental group, peak pressure in the hallux and first metatarsal area was significantly higher than the control group ( P<0.05), while mid-heel and lateral heel peak pressures were significantly lower than the control group ( P<0.05). After 8 weeks, all groups reported more comfort compared with the same group in week 0 ( P<0.05). The comfort scores reported by the experimental group were significantly lower than those of the control group ( P<0.05).

          Conclusions

          This study supports the efficiency of customized 3D printing AFO for reducing damage associated with plantar lesions and improving comfort in patients with plantar fasciitis compared with prefabricated AFO. Customized AFO is useful in the treatment of plantar fasciitis compared with prefabricated AFOs.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Polymers for 3D Printing and Customized Additive Manufacturing

          Additive manufacturing (AM) alias 3D printing translates computer-aided design (CAD) virtual 3D models into physical objects. By digital slicing of CAD, 3D scan, or tomography data, AM builds objects layer by layer without the need for molds or machining. AM enables decentralized fabrication of customized objects on demand by exploiting digital information storage and retrieval via the Internet. The ongoing transition from rapid prototyping to rapid manufacturing prompts new challenges for mechanical engineers and materials scientists alike. Because polymers are by far the most utilized class of materials for AM, this Review focuses on polymer processing and the development of polymers and advanced polymer systems specifically for AM. AM techniques covered include vat photopolymerization (stereolithography), powder bed fusion (SLS), material and binder jetting (inkjet and aerosol 3D printing), sheet lamination (LOM), extrusion (FDM, 3D dispensing, 3D fiber deposition, and 3D plotting), and 3D bioprinting. The range of polymers used in AM encompasses thermoplastics, thermosets, elastomers, hydrogels, functional polymers, polymer blends, composites, and biological systems. Aspects of polymer design, additives, and processing parameters as they relate to enhancing build speed and improving accuracy, functionality, surface finish, stability, mechanical properties, and porosity are addressed. Selected applications demonstrate how polymer-based AM is being exploited in lightweight engineering, architecture, food processing, optics, energy technology, dentistry, drug delivery, and personalized medicine. Unparalleled by metals and ceramics, polymer-based AM plays a key role in the emerging AM of advanced multifunctional and multimaterial systems including living biological systems as well as life-like synthetic systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Reliability of the TekScan MatScan® system for the measurement of plantar forces and pressures during barefoot level walking in healthy adults

            Background Plantar pressure systems are increasingly being used to evaluate foot function in both research settings and in clinical practice. The purpose of this study was to investigate the reliability of the TekScan MatScan® system in assessing plantar forces and pressures during barefoot level walking. Methods Thirty participants were assessed for the reliability of measurements taken one week apart for the variables maximum force, peak pressure and average pressure. The following seven regions of the foot were investigated; heel, midfoot, 3rd-5th metatarsophalangeal joint, 2nd metatarsophalangeal joint, 1st metatarsophalangeal joint, hallux and the lesser toes. Results Reliability was assessed using both the mean and the median values of three repeated trials. The system displayed moderate to good reliability of mean and median calculations for the three analysed variables across all seven regions, as indicated by intra-class correlation coefficients ranging from 0.44 to 0.95 for the mean and 0.54 to 0.97 for the median, and coefficients of variation ranging from 5 to 20% for the mean and 3 to 23% for the median. Selecting the median value of three repeated trials yielded slightly more reliable results than the mean. Conclusions These findings indicate that the TekScan MatScan® system demonstrates generally moderate to good reliability.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effectiveness of customised foot orthoses for Achilles tendinopathy: a randomised controlled trial.

              To evaluate the effectiveness of customised foot orthoses in chronic mid-portion Achilles tendinopathy.
                Bookmark

                Author and article information

                Journal
                Med Sci Monit
                Med. Sci. Monit
                Medical Science Monitor
                Medical Science Monitor : International Medical Journal of Experimental and Clinical Research
                International Scientific Literature, Inc.
                1234-1010
                1643-3750
                2019
                21 February 2019
                : 25
                : 1392-1400
                Affiliations
                [1 ]Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, P.R. China
                [2 ]Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
                [3 ]Department of Pain, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
                Author notes
                Corresponding Author: Hui Jin, e-mail: jinhui0203@ 123456163.com
                [A]

                Study Design

                [B]

                Data Collection

                [C]

                Statistical Analysis

                [D]

                Data Interpretation

                [E]

                Manuscript Preparation

                [F]

                Literature Search

                [G]

                Funds Collection

                Article
                915045
                10.12659/MSM.915045
                6394143
                30789873
                d1ec4721-9c2c-47c8-bea8-5ceffc488aab
                © Med Sci Monit, 2019

                This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International ( CC BY-NC-ND 4.0)

                History
                : 08 January 2019
                : 12 February 2019
                Categories
                Clinical Research

                fasciitis, plantar,foot orthoses,imaging, three-dimensional,pain clinics,rehabilitation

                Comments

                Comment on this article