0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rapid structural evolution of Dendrobium mitogenomes and mito‐nuclear phylogeny discordances in Dendrobium (Orchidaceae)

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reconstructing mitochondrial genomes of angiosperms is extremely intricate due to frequent recombinations which give rise to varied sized in Dendrobium mitogenomes and their structural variations, even in most orchid species. In this study, we first sequenced two complete and five draft mitochondrial genomes of Dendrobium using next‐generation and third‐generation sequencing technologies. The mitochondrial genomes were 420 538–689 048 bp long, showing multipartite (multichromosomal) structures that consisted of variably sized circular or linear‐mapping isoforms (chromosomes). The comparison of mitochondrial genomes showed frequent gene losses in Dendrobium species. To explore structure variations of mitochondrial genomes in vivo, we quantified copy numbers of five mitochondrial genes and DNA contents per mitochondrion. The gene copy numbers and the DNA contents showed extreme differences during Dendrobium development, suggesting dynamic structures of mitochondrial genomes. Furthermore, phylogenetic relationships of 97 accessions from 39 Dendrobium species were constructed based on 12 nuclear single‐copy genes and 15 mitochondrial genes. We discovered obvious discordance between the nuclear and mitochondrial trees. Reticulate evolution was inferred from the species network analysis in Dendrobium. Our findings revealed the rapid structural evolution of Dendrobium mitochondrial genomes and the existence of hybridization events in Dendrobium species, which provided new insights into in vivo structural variations of plant mitochondrial genomes and the strong potential of mitochondrial genes in deciphering plant evolution history.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability

          We report a major update of the MAFFT multiple sequence alignment program. This version has several new features, including options for adding unaligned sequences into an existing alignment, adjustment of direction in nucleotide alignment, constrained alignment and parallel processing, which were implemented after the previous major update. This report shows actual examples to explain how these features work, alone and in combination. Some examples incorrectly aligned by MAFFT are also shown to clarify its limitations. We discuss how to avoid misalignments, and our ongoing efforts to overcome such limitations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies

            Motivation: Phylogenies are increasingly used in all fields of medical and biological research. Moreover, because of the next-generation sequencing revolution, datasets used for conducting phylogenetic analyses grow at an unprecedented pace. RAxML (Randomized Axelerated Maximum Likelihood) is a popular program for phylogenetic analyses of large datasets under maximum likelihood. Since the last RAxML paper in 2006, it has been continuously maintained and extended to accommodate the increasingly growing input datasets and to serve the needs of the user community. Results: I present some of the most notable new features and extensions of RAxML, such as a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting post-analyses on sets of trees. In addition, an up-to-date 50-page user manual covering all new RAxML options is available. Availability and implementation: The code is available under GNU GPL at https://github.com/stamatak/standard-RAxML. Contact: alexandros.stamatakis@h-its.org Supplementary information: Supplementary data are available at Bioinformatics online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.

              The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of Systematics and Evolution
                J of Sytematics Evolution
                Wiley
                1674-4918
                1759-6831
                September 2023
                November 09 2022
                September 2023
                : 61
                : 5
                : 790-805
                Affiliations
                [1 ] College of Life Sciences Nanjing Normal University Nanjing 210097 China
                Article
                10.1111/jse.12912
                d183314a-206b-45ed-b5b2-57bc3ae31012
                © 2023

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article