10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Low Molecular Weight Fucoidan Inhibits Pulmonary Fibrosis In Vivo and In Vitro via Antioxidant Activity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, sulfated polysaccharides extracted from Laminaria japonica were degraded by free radicals to obtain low molecular weight fucoidan (LMWF). The in vivo and in vitro effects of LMWF on bleomycin-treated pulmonary fibrosis mice and TGF-treated A549 cells, respectively, were evaluated, and the role of antioxidant activity was assessed. H&E, Masson's trichrome, and Sirius red staining results showed that bleomycin induced obvious pathological changes and collagen deposition in the lung tissue of mice. However, LMWF effectively inhibited collagen deposition, and based on immunohistochemistry analyses, LMWF can also inhibit the expression of fibrosis markers. At the same time, LMWF could regulate related antioxidant factors in the lung tissue of pulmonary fibrosis mice and reduce the pressure of oxidative stress. Moreover, LMWF could improve the morphology of cells induced with TGF, which confirmed that LMWF could inhibit fibrosis via antioxidant activity modulation.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis.

          In two of three phase 3 trials, pirfenidone, an oral antifibrotic therapy, reduced disease progression, as measured by the decline in forced vital capacity (FVC) or vital capacity, in patients with idiopathic pulmonary fibrosis; in the third trial, this end point was not achieved. We sought to confirm the beneficial effect of pirfenidone on disease progression in such patients. In this phase 3 study, we randomly assigned 555 patients with idiopathic pulmonary fibrosis to receive either oral pirfenidone (2403 mg per day) or placebo for 52 weeks. The primary end point was the change in FVC or death at week 52. Secondary end points were the 6-minute walk distance, progression-free survival, dyspnea, and death from any cause or from idiopathic pulmonary fibrosis. In the pirfenidone group, as compared with the placebo group, there was a relative reduction of 47.9% in the proportion of patients who had an absolute decline of 10 percentage points or more in the percentage of the predicted FVC or who died; there was also a relative increase of 132.5% in the proportion of patients with no decline in FVC (P<0.001). Pirfenidone reduced the decline in the 6-minute walk distance (P=0.04) and improved progression-free survival (P<0.001). There was no significant between-group difference in dyspnea scores (P=0.16) or in rates of death from any cause (P=0.10) or from idiopathic pulmonary fibrosis (P=0.23). However, in a prespecified pooled analysis incorporating results from two previous phase 3 trials, the between-group difference favoring pirfenidone was significant for death from any cause (P=0.01) and from idiopathic pulmonary fibrosis (P=0.006). Gastrointestinal and skin-related adverse events were more common in the pirfenidone group than in the placebo group but rarely led to treatment discontinuation. Pirfenidone, as compared with placebo, reduced disease progression, as reflected by lung function, exercise tolerance, and progression-free survival, in patients with idiopathic pulmonary fibrosis. Treatment was associated with an acceptable side-effect profile and fewer deaths. (Funded by InterMune; ASCEND ClinicalTrials.gov number, NCT01366209.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nintedanib in Progressive Fibrosing Interstitial Lung Diseases

            Preclinical data have suggested that nintedanib, an intracellular inhibitor of tyrosine kinases, inhibits processes involved in the progression of lung fibrosis. Although the efficacy of nintedanib has been shown in idiopathic pulmonary fibrosis, its efficacy across a broad range of fibrosing lung diseases is unknown.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Idiopathic pulmonary fibrosis.

              Idiopathic pulmonary fibrosis is a prototype of chronic, progressive, and fibrotic lung disease. Healthy tissue is replaced by altered extracellular matrix and alveolar architecture is destroyed, which leads to decreased lung compliance, disrupted gas exchange, and ultimately respiratory failure and death. In less than a decade, understanding of the pathogenesis and management of this disease has been transformed, and two disease-modifying therapies have been approved, worldwide. In this Seminar, we summarise the presentation, pathophysiology, diagnosis, and treatment options available for patients with idiopathic pulmonary fibrosis. This disease has improved understanding of the mechanisms of lung fibrosis, and offers hope that similar approaches will transform the management of patients with other progressive fibrotic lung diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2022
                2 March 2022
                : 2022
                : 7038834
                Affiliations
                1College of Pharmacy, Linyi University, Linyi, Shandong, China
                2Chinese Academy of Traditional Chinese Medicine, China
                Author notes

                Academic Editor: Ryoji Nagai

                Author information
                https://orcid.org/0000-0003-1165-4723
                Article
                10.1155/2022/7038834
                8906950
                35281460
                d16c1ebe-e2c9-48de-bcd4-bdb2a600d3db
                Copyright © 2022 Huidan Dong et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 September 2021
                : 13 December 2021
                : 14 February 2022
                Funding
                Funded by: Innovation and Entrepreneurship Training Program for College Students in Shandong Province
                Award ID: S202110452122
                Funded by: Key Project at Central Government Level: The Ability Establishment of Sustainable Use for Valuable Chinese Medicine Resources
                Award ID: 2060302
                Funded by: Natural Science Foundation of Shandong Province
                Award ID: ZR2019BD055
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article