45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Genome-Wide Association Study of Optic Disc Parameters

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The optic nerve head is involved in many ophthalmic disorders, including common diseases such as myopia and open-angle glaucoma. Two of the most important parameters are the size of the optic disc area and the vertical cup-disc ratio (VCDR). Both are highly heritable but genetically largely undetermined. We performed a meta-analysis of genome-wide association (GWA) data to identify genetic variants associated with optic disc area and VCDR. The gene discovery included 7,360 unrelated individuals from the population-based Rotterdam Study I and Rotterdam Study II cohorts. These cohorts revealed two genome-wide significant loci for optic disc area, rs1192415 on chromosome 1p22 (p = 6.72×10 −19) within 117 kb of the CDC7 gene and rs1900004 on chromosome 10q21.3-q22.1 (p = 2.67×10 −33) within 10 kb of the ATOH7 gene. They revealed two genome-wide significant loci for VCDR, rs1063192 on chromosome 9p21 (p = 6.15×10 −11) in the CDKN2B gene and rs10483727 on chromosome 14q22.3-q23 (p = 2.93×10 −10) within 40 kbp of the SIX1 gene. Findings were replicated in two independent Dutch cohorts (Rotterdam Study III and Erasmus Rucphen Family study; N = 3,612), and the TwinsUK cohort (N = 843). Meta-analysis with the replication cohorts confirmed the four loci and revealed a third locus at 16q12.1 associated with optic disc area, and four other loci at 11q13, 13q13, 17q23 (borderline significant), and 22q12.1 for VCDR. ATOH7 was also associated with VCDR independent of optic disc area. Three of the loci were marginally associated with open-angle glaucoma. The protein pathways in which the loci of optic disc area are involved overlap with those identified for VCDR, suggesting a common genetic origin.

          Author Summary

          Morphologic characteristics of the optic nerve head are involved in many ophthalmic diseases. Its size, called the optic disc area, is an important measure and has been associated with e.g. myopia and open-angle glaucoma (OAG). Another important and clinical parameter of the optic disc is the vertical cup-disc ratio (VCDR). Although studies have shown a high heritability of optic disc area and VCDR, its genetic determinants are still undetermined. We therefore conducted a genome-wide association (GWA) study on these quantitative traits, using data of over 11,000 Caucasian participants, and related the findings to myopia and OAG. We found evidence for association of three loci with optic disc area: CDC7/ TGFBR3 region, ATOH7, and SALL1; and six with VCDR: CDKN2B, SIX1, SCYL1, CHEK2, ATOH7, and DCLK1; and additionally one borderline significant locus: BCAS3. None of the loci could be related to myopia. There was marginal evidence for association of ATOH7, CDKN2B, and SIX1 with OAG, which remains to be confirmed. The present study reveals new insights into the physiological development of the optic nerve and may shed light on the pathophysiological protein pathways leading to (neuro-) ophthalmologic diseases such as OAG.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest.

          Transforming growth factor-beta (TGF-beta) inhibits cell proliferation by inducing a G1-phase cell cycle arrest. Normal progression through G1 is promoted by the activity of the cyclin-dependent protein kinases CDK4 and CDK6 (ref. 2), which are inhibited by the protein p16INK4. We have isolated a new member of the p16INK4 family, p15INK4B. p15 expression is induced approximately 30-fold in human keratinocytes by treatment with TGF-beta, suggesting that p15 may act as an effector of TGF-beta-mediated cell cycle arrest. The gene encoding p15 is located on chromosome 9 adjacent to the p16 gene at a frequent site of chromosomal abnormality in human tumours (9p21).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Family-based association tests for genomewide association scans.

            With millions of single-nucleotide polymorphisms (SNPs) identified and characterized, genomewide association studies have begun to identify susceptibility genes for complex traits and diseases. These studies involve the characterization and analysis of very-high-resolution SNP genotype data for hundreds or thousands of individuals. We describe a computationally efficient approach to testing association between SNPs and quantitative phenotypes, which can be applied to whole-genome association scans. In addition to observed genotypes, our approach allows estimation of missing genotypes, resulting in substantial increases in power when genotyping resources are limited. We estimate missing genotypes probabilistically using the Lander-Green or Elston-Stewart algorithms and combine high-resolution SNP genotypes for a subset of individuals in each pedigree with sparser marker data for the remaining individuals. We show that power is increased whenever phenotype information for ungenotyped individuals is included in analyses and that high-density genotyping of just three carefully selected individuals in a nuclear family can recover >90% of the information available if every individual were genotyped, for a fraction of the cost and experimental effort. To aid in study design, we evaluate the power of strategies that genotype different subsets of individuals in each pedigree and make recommendations about which individuals should be genotyped at a high density. To illustrate our method, we performed genomewide association analysis for 27 gene-expression phenotypes in 3-generation families (Centre d'Etude du Polymorphisme Humain pedigrees), in which genotypes for ~860,000 SNPs in 90 grandparents and parents are complemented by genotypes for ~6,700 SNPs in a total of 168 individuals. In addition to increasing the evidence of association at 15 previously identified cis-acting associated alleles, our genotype-inference algorithm allowed us to identify associated alleles at 4 cis-acting loci that were missed when analysis was restricted to individuals with the high-density SNP data. Our genotype-inference algorithm and the proposed association tests are implemented in software that is available for free.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Zeb1 links epithelial-mesenchymal transition and cellular senescence.

              Overexpression of zinc finger E-box binding homeobox transcription factor 1 (Zeb1) in cancer leads to epithelial-to-mesenchymal transition (EMT) and increased metastasis. As opposed to overexpression, we show that mutation of Zeb1 in mice causes a mesenchymal-epithelial transition in gene expression characterized by ectopic expression of epithelial genes such as E-cadherin and loss of expression of mesenchymal genes such as vimentin. In contrast to rapid proliferation in cancer cells where Zeb1 is overexpressed, this mesenchymal-epithelial transition in mutant mice is associated with diminished proliferation of progenitor cells at sites of developmental defects, including the forming palate, skeleton and CNS. Zeb1 dosage-dependent deregulation of epithelial and mesenchymal genes extends to mouse embryonic fibroblasts (MEFs), and mutant MEFs also display diminished replicative capacity in culture, leading to premature senescence. Replicative senescence in MEFs is classically triggered by products of the Ink4a (Cdkn2a) gene. However, this Ink4a pathway is not activated during senescence of Zeb1 mutant MEFs. Instead, there is ectopic expression of two other cell cycle inhibitory cyclin-dependent kinase inhibitors, p15Ink4b (Cdkn2b) and p21Cdkn1a (Cdkn1a). We demonstrate that this ectopic expression of p15Ink4b extends in vivo to sites of diminished progenitor cell proliferation and developmental defects in Zeb1-null mice.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                June 2010
                June 2010
                10 June 2010
                : 6
                : 6
                : e1000978
                Affiliations
                [1 ]Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
                [2 ]Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
                [3 ]Glaucoma Service, The Rotterdam Eye Hospital, Rotterdam, The Netherlands
                [4 ]Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
                [5 ]Department of Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
                [6 ]Department of Ophthalmogenetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
                [7 ]Department of Ophthalmology, Academic Medical Center, Amsterdam, The Netherlands
                [8 ]Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
                [9 ]Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
                [10 ]Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
                [11 ]Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
                Stanford University School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: WDR LMEvK MKI YSA AH FR BAO AGU JRV CMvD. Performed the experiments: WDR NA YSA FR BAO AGU CMvD. Analyzed the data: WDR LMEvK AI PH CJH. Contributed reagents/materials/analysis tools: LMEvK MKI NMJ PTVMdJ AAB YSA RCWW AH FR BAO AGU HGL JRV CCWK CMvD. Wrote the paper: WDR LMEvK MKI PTVMdJ HGL CCWK CMvD.

                Article
                09-PLGE-RA-2125R2
                10.1371/journal.pgen.1000978
                2883590
                20548946
                d13cd66c-5841-49d4-8819-ad10caa3bcbc
                Ramdas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 December 2009
                : 7 May 2010
                Page count
                Pages: 12
                Categories
                Research Article
                Genetics and Genomics
                Genetics and Genomics/Gene Discovery
                Genetics and Genomics/Population Genetics
                Ophthalmology
                Ophthalmology/Glaucoma
                Public Health and Epidemiology
                Public Health and Epidemiology/Epidemiology

                Genetics
                Genetics

                Comments

                Comment on this article