123
views
0
recommends
+1 Recommend
0 collections
    16
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endothelial Dysfunction in the Apolipoprotein E-deficient Mouse: insights into the influence of diet, gender and aging

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since the early 1990s, several strains of genetically modified mice have been developed as models for experimental atherosclerosis. Among the available models, the apolipoprotein E-deficient (apoE -/-) mouse is of particular relevance because of its propensity to spontaneously develop hypercholesterolemia and atherosclerotic lesions that are similar to those found in humans, even when the mice are fed a chow diet. The main purpose of this review is to highlight the key achievements that have contributed to elucidating the mechanisms pertaining to vascular dysfunction in the apoE -/- mouse. First, we summarize lipoproteins and atherosclerosis phenotypes in the apoE -/- mouse, and then we briefly discuss controversial evidence relative to the influence of gender on the development of atherosclerosis in this murine model. Second, we discuss the main mechanisms underlying the endothelial dysfunction of conducting vessels and resistance vessels and examine how this vascular defect can be influenced by diet, aging and gender in the apoE -/- mouse.

          Related collections

          Most cited references106

          • Record: found
          • Abstract: found
          • Article: not found

          Superoxide dismutases: role in redox signaling, vascular function, and diseases.

          Excessive reactive oxygen species Revised abstract, especially superoxide anion (O₂•-), play important roles in the pathogenesis of many cardiovascular diseases, including hypertension and atherosclerosis. Superoxide dismutases (SODs) are the major antioxidant defense systems against (O₂•-), which consist of three isoforms of SOD in mammals: the cytoplasmic Cu/ZnSOD (SOD1), the mitochondrial MnSOD (SOD2), and the extracellular Cu/ZnSOD (SOD3), all of which require catalytic metal (Cu or Mn) for their activation. Recent evidence suggests that in each subcellular location, SODs catalyze the conversion of (O₂•-), H2O2, which may participate in cell signaling. In addition, SODs play a critical role in inhibiting oxidative inactivation of nitric oxide, thereby preventing peroxynitrite formation and endothelial and mitochondrial dysfunction. The importance of each SOD isoform is further illustrated by studies from the use of genetically altered mice and viral-mediated gene transfer. Given the essential role of SODs in cardiovascular disease, the concept of antioxidant therapies, that is, reinforcement of endogenous antioxidant defenses to more effectively protect against oxidative stress, is of substantial interest. However, the clinical evidence remains controversial. In this review, we will update the role of each SOD in vascular biologies, physiologies, and pathophysiologies such as atherosclerosis, hypertension, and angiogenesis. Because of the importance of metal cofactors in the activity of SODs, we will also discuss how each SOD obtains catalytic metal in the active sites. Finally, we will discuss the development of future SOD-dependent therapeutic strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction.

            The functional changes associated with cellular senescence may be involved in human aging and age-related vascular disorders. We have shown the important role of telomere and telomerase in vascular cell senescence in vitro. Progressive telomere shortening in vivo has been observed in the regions susceptible to atherosclerosis, implying contributions to atherogenesis. However, whether senescent vascular cells are present in the vasculature and contribute to the pathogenesis of atherosclerosis remains unclear. Senescence-associated beta-galactosidase (beta-gal) activity was examined in the coronary arteries and the internal mammary arteries retrieved from autopsied individuals who had had ischemic heart diseases. Strong beta-gal stainings were observed in atherosclerotic lesions of the coronary arteries but not in the internal mammary arteries. An immunohistochemical analysis using anti-factor VIII antibody demonstrated that beta-gal stained cells are vascular endothelial cells. To determine whether endothelial cell senescence causes endothelial dysfunction, we induced senescence in human aortic endothelial cells (HAECs) by inhibiting telomere function and examined the expression of intercellular adhesion molecule (ICAM)-1 and endothelial nitric oxide synthase (eNOS) activity. Senescent HAECs exhibited increased ICAM-1 expression and decreased eNOS activity, both of which are alterations implicated in atherogenesis. In contrast, introduction of telomerase catalytic component significantly extended the life span and inhibited the functional alterations associated with senescence in HAECs. Vascular endothelial cells with senescence-associated phenotypes are present in human atherosclerotic lesions, and endothelial cell senescence induced by telomere shortening may contribute to atherogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree.

              Initial description of apolipoprotein (apo) E-deficient transgenic mice demonstrated the development of severe hypercholesterolemia due to probable delayed clearance of large atherogenic particles from the circulation. Examination of these mice demonstrated foam cell accumulation in the aortic root and pulmonary arteries by 10 weeks of age. In the present study, the animals were fed either chow or a high-fat, Western-type diet and examined at ages ranging from 6 to 40 weeks. Gross examination by dissection microscopy revealed a predilection for development of lesions in the aortic root, at the lesser curvature of the aortic arch, the principal branches of the aorta, and in the pulmonary and carotid arteries. Monocyte attachment to endothelial cells was observed by light and electron microscopic examination at 6 weeks, the earliest time point examined. Foam cell lesions developed as early as 8 weeks, and after 15 weeks advanced lesions (fibrous plaques) were observed. The latter consisted of a fibrous cap containing smooth muscle cells surrounded by connective tissue matrix that covered a necrotic core with numerous foamy macrophages. Mice fed the Western-type diet generally had more advanced lesions than those fed a chow diet. The apoE-deficient mouse contains the entire spectrum of lesions observed during atherogenesis and is the first mouse model to develop lesions similar to those in humans. This model should provide numerous opportunities to study the pathogenesis and therapy of atherosclerosis in a small, genetically defined animal.
                Bookmark

                Author and article information

                Journal
                Lipids Health Dis
                Lipids in Health and Disease
                BioMed Central
                1476-511X
                2011
                14 November 2011
                : 10
                : 211
                Affiliations
                [1 ]Departament of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
                [2 ]The University of Iowa, Iowa City, IA, USA
                [3 ]Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
                [4 ]Emescam School of Health Sciences, Vitoria, ES, Brazil
                Article
                1476-511X-10-211
                10.1186/1476-511X-10-211
                3247089
                22082357
                d1154b33-3ade-4742-b33b-1f95a4920c7d
                Copyright ©2011 Meyrelles et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 October 2011
                : 14 November 2011
                Categories
                Review

                Biochemistry
                hypercholesterolemia,atherosclerosis,gender,oxidative stress,apoe,endothelial dysfunction
                Biochemistry
                hypercholesterolemia, atherosclerosis, gender, oxidative stress, apoe, endothelial dysfunction

                Comments

                Comment on this article