5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent advances in targeted therapies in acute myeloid leukemia

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acute myeloid leukemia (AML) is the most common acute leukemia in adults. While survival for younger patients over the last several decades has improved nearly sixfold with the optimization of intensive induction chemotherapy and allogeneic stem cell transplantation (alloHSCT), this effect has been largely mitigated in older and less fit patients as well as those with adverse-risk disease characteristics. However, the last 10 years has been marked by major advances in the molecular profiling of AML characterized by a deeper understanding of disease pathobiology and therapeutic vulnerabilities. In this regard, the classification of AML subtypes has recently evolved from a morphologic to a molecular and genetic basis, reflected by recent updates from the World Health Organization and the new International Consensus Classification system. After years of stagnation in new drug approvals for AML, there has been a rapid expansion of the armamentarium against this disease since 2017. Low-intensity induction therapy with hypomethylating agents and venetoclax has substantially improved outcomes, including in those previously considered to have a poor prognosis. Furthermore, targeted oral therapies against driver mutations in AML have been added to the repertoire. But with an accelerated increase in treatment options, several questions arise such as how to best sequence therapy, how to combine therapies, and if there is a role for maintenance therapy in those who achieve remission and cannot undergo alloHSCT. Moreover, certain subtypes of AML, such as those with TP53 mutations, still have dismal outcomes despite these recent advances, underscoring an ongoing unmet need and opportunity for translational advances. In this review, we will discuss recent updates in the classification and risk stratification of AML, explore the literature regarding low-intensity and novel oral combination therapies, and briefly highlight investigative agents currently in early clinical development for high-risk disease subtypes.

          Related collections

          Most cited references201

          • Record: found
          • Abstract: found
          • Article: not found

          Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel.

          The first edition of the European LeukemiaNet (ELN) recommendations for diagnosis and management of acute myeloid leukemia (AML) in adults, published in 2010, has found broad acceptance by physicians and investigators caring for patients with AML. Recent advances, for example, in the discovery of the genomic landscape of the disease, in the development of assays for genetic testing and for detecting minimal residual disease (MRD), as well as in the development of novel antileukemic agents, prompted an international panel to provide updated evidence- and expert opinion-based recommendations. The recommendations include a revised version of the ELN genetic categories, a proposal for a response category based on MRD status, and criteria for progressive disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Age-related clonal hematopoiesis associated with adverse outcomes.

            The incidence of hematologic cancers increases with age. These cancers are associated with recurrent somatic mutations in specific genes. We hypothesized that such mutations would be detectable in the blood of some persons who are not known to have hematologic disorders. We analyzed whole-exome sequencing data from DNA in the peripheral-blood cells of 17,182 persons who were unselected for hematologic phenotypes. We looked for somatic mutations by identifying previously characterized single-nucleotide variants and small insertions or deletions in 160 genes that are recurrently mutated in hematologic cancers. The presence of mutations was analyzed for an association with hematologic phenotypes, survival, and cardiovascular events. Detectable somatic mutations were rare in persons younger than 40 years of age but rose appreciably in frequency with age. Among persons 70 to 79 years of age, 80 to 89 years of age, and 90 to 108 years of age, these clonal mutations were observed in 9.5% (219 of 2300 persons), 11.7% (37 of 317), and 18.4% (19 of 103), respectively. The majority of the variants occurred in three genes: DNMT3A, TET2, and ASXL1. The presence of a somatic mutation was associated with an increase in the risk of hematologic cancer (hazard ratio, 11.1; 95% confidence interval [CI], 3.9 to 32.6), an increase in all-cause mortality (hazard ratio, 1.4; 95% CI, 1.1 to 1.8), and increases in the risks of incident coronary heart disease (hazard ratio, 2.0; 95% CI, 1.2 to 3.4) and ischemic stroke (hazard ratio, 2.6; 95% CI, 1.4 to 4.8). Age-related clonal hematopoiesis is a common condition that is associated with increases in the risk of hematologic cancer and in all-cause mortality, with the latter possibly due to an increased risk of cardiovascular disease. (Funded by the National Institutes of Health and others.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia.

              Many mutations that contribute to the pathogenesis of acute myeloid leukemia (AML) are undefined. The relationships between patterns of mutations and epigenetic phenotypes are not yet clear. We analyzed the genomes of 200 clinically annotated adult cases of de novo AML, using either whole-genome sequencing (50 cases) or whole-exome sequencing (150 cases), along with RNA and microRNA sequencing and DNA-methylation analysis. AML genomes have fewer mutations than most other adult cancers, with an average of only 13 mutations found in genes. Of these, an average of 5 are in genes that are recurrently mutated in AML. A total of 23 genes were significantly mutated, and another 237 were mutated in two or more samples. Nearly all samples had at least 1 nonsynonymous mutation in one of nine categories of genes that are almost certainly relevant for pathogenesis, including transcription-factor fusions (18% of cases), the gene encoding nucleophosmin (NPM1) (27%), tumor-suppressor genes (16%), DNA-methylation-related genes (44%), signaling genes (59%), chromatin-modifying genes (30%), myeloid transcription-factor genes (22%), cohesin-complex genes (13%), and spliceosome-complex genes (14%). Patterns of cooperation and mutual exclusivity suggested strong biologic relationships among several of the genes and categories. We identified at least one potential driver mutation in nearly all AML samples and found that a complex interplay of genetic events contributes to AML pathogenesis in individual patients. The databases from this study are widely available to serve as a foundation for further investigations of AML pathogenesis, classification, and risk stratification. (Funded by the National Institutes of Health.).
                Bookmark

                Author and article information

                Contributors
                Catherine.Lai@pennmedicine.upenn.edu
                Journal
                J Hematol Oncol
                J Hematol Oncol
                Journal of Hematology & Oncology
                BioMed Central (London )
                1756-8722
                25 March 2023
                25 March 2023
                2023
                : 16
                : 29
                Affiliations
                GRID grid.411115.1, ISNI 0000 0004 0435 0884, Division of Hematology/Oncology, Department of Medicine, , Hospital of the University of Pennsylvania, ; South Pavilion, 12th Floor, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
                Article
                1424
                10.1186/s13045-023-01424-6
                10039574
                36966300
                d11407d9-cdbc-4572-abbb-0420efffedae
                © The Author(s) 2023

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 16 December 2022
                : 14 March 2023
                Funding
                Funded by: T32DK07780
                Categories
                Review
                Custom metadata
                © The Author(s) 2023

                Oncology & Radiotherapy
                acute myeloid leukemia,targeted therapy,novel treatments,combination therapy,flt3,idh1,idh2,tp53

                Comments

                Comment on this article