6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insecticidal Serralysin of Serratia marcescens Is Detoxified in M3 Midgut Region of Riptortus pedestris

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Riptortus pedestris insect indiscriminately acquires not only the symbiotic bacterium Burkholderia insecticola, but also entomopathogens that are abundant in the soil via feeding. However, it is unclear how the host insect survives oral infections of entomopathogens. A previous study suggested that serralysin, a potent virulence factor produced by Serratia marcescens, suppresses cellular immunity by degrading adhesion molecules, thereby contributing to bacterial pathogenesis. Here, we observed that S. marcescens orally administered to R. pedestris stably colonized the insect midgut, while not exhibiting insecticidal activity. Additionally, oral infection with S. marcescens did not affect the host growth or fitness. When co-incubated with the midgut lysates of R. pedestris, serralysin was remarkably degraded. The detoxification activity against serralysin was enhanced in the midgut extract of gut symbiont-colonizing insects. The mRNA expression levels of serralysin genes were negligible in M3-colonizing S. marcescens. M3-colonizing S. marcescens did not produce serralysin toxin. Immunoblot analyses revealed that serralysin was not detected in the M3 midgut region. The findings of our study suggest that orally infected S. marcescens lose entomopathogenicity through host-derived degrading factors and suppression of serralysin.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Extreme genome reduction in symbiotic bacteria.

          Since 2006, numerous cases of bacterial symbionts with extraordinarily small genomes have been reported. These organisms represent independent lineages from diverse bacterial groups. They have diminutive gene sets that rival some mitochondria and chloroplasts in terms of gene numbers and lack genes that are considered to be essential in other bacteria. These symbionts have numerous features in common, such as extraordinarily fast protein evolution and a high abundance of chaperones. Together, these features point to highly degenerate genomes that retain only the most essential functions, often including a considerable fraction of genes that serve the hosts. These discoveries have implications for the concept of minimal genomes, the origins of cellular organelles, and studies of symbiosis and host-associated microbiota.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics.

            Xenobiotic resistance in insects has evolved predominantly by increasing the metabolic capability of detoxificative systems and/or reducing xenobiotic target site sensitivity. In contrast to the limited range of nucleotide changes that lead to target site insensitivity, many molecular mechanisms lead to enhancements in xenobiotic metabolism. The genomic changes that lead to amplification, overexpression, and coding sequence variation in the three major groups of genes encoding metabolic enzymes, i.e., cytochrome P450 monooxygenases (P450s), esterases, and glutathione-S-transferases (GSTs), are the focus of this review. A substantial number of the adaptive genomic changes associated with insecticide resistance that have been characterized to date are transposon mediated. Several lines of evidence suggest that P450 genes involved in insecticide resistance, and perhaps insecticide detoxification genes in general, may share an evolutionary association with genes involved in allelochemical metabolism. Differences in the selective regime imposed by allelochemicals and insecticides may account for the relative importance of regulatory or structural mutations in conferring resistance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bacillus thuringiensis: A story of a successful bioinsecticide.

              Bacillus thuringiensis (Bt) bacteria are insect pathogens that rely on insecticidal pore forming proteins known as Cry and Cyt toxins to kill their insect larval hosts. At least four different non-structurally related families of proteins form the Cry toxin group of toxins. The expression of certain Cry toxins in transgenic crops has contributed to an efficient control of insect pests resulting in a significant reduction in chemical insecticide use. The mode of action of the three domain Cry toxin family involves sequential interaction of these toxins with several insect midgut proteins facilitating the formation of a pre-pore oligomer structure and subsequent membrane insertion that leads to the killing of midgut insect cells by osmotic shock. In this manuscript we review recent progress in understanding the mode of action of this family of proteins in lepidopteran, dipteran and coleopteran insects. Interestingly, similar Cry-binding proteins have been identified in the three insect orders, as cadherin, aminopeptidase-N and alkaline phosphatase suggesting a conserved mode of action. Also, recent data on insect responses to Cry toxin attack is discussed. Finally, we review the different Bt based products, including transgenic crops, that are currently used in agriculture. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                31 May 2022
                2022
                : 13
                : 913113
                Affiliations
                [1] 1Metabolomics Research Center for Functional Materials, Kyungsung University , Busan, South Korea
                [2] 2Department of SmartBio, Kyungsung University , Busan, South Korea
                Author notes

                Edited by: Robert Czajkowski, University of Gdansk, Poland

                Reviewed by: Xiaoli Bing, Nanjing Agricultural University, China; Luis Felipe Muriel-Millán, Universidad Nacional Autónoma de México, Mexico

                *Correspondence: Junbeom Lee, wind2000net@ 123456ks.ac.kr

                This article was submitted to Microbial Symbioses, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2022.913113
                9197470
                35711769
                d1106c6b-b3ba-40fa-b3c6-47581d560352
                Copyright © 2022 Lee and Lee.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 April 2022
                : 06 May 2022
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 56, Pages: 10, Words: 6644
                Funding
                Funded by: National Research Foundation of Korea , doi 10.13039/501100003725;
                Award ID: NRF-2020R1I1A1A0106704312
                Funded by: Ministry of Education , doi 10.13039/501100002701;
                Award ID: 2019R1A6C1010044
                Funded by: Korea Basic Science Institute , doi 10.13039/501100003716;
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                insect symbiosis,serralysin,detoxification,riptortus pedestris,serratia marcescens db11

                Comments

                Comment on this article