19
views
0
recommends
+1 Recommend
0 collections
    0
    recommends
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fructooligosaccharide supplementation alleviated the pathological immune response and prevented the impairment of intestinal barrier in DSS-induced acute colitis mice

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The dysbiosis of gut microbiota is closely related to the occurrence and development of inflammatory bowel disease (IBD).

          Abstract

          The dysbiosis of gut microbiota is closely related to the occurrence and development of inflammatory bowel disease (IBD). The manipulation of intestinal flora through prebiotics or probiotics is expected to induce and maintain the remission of IBD symptoms. 6-week-old C57BL/J mice were daily gavaged with fructooligosaccharides (FOS) or the synbiotic two weeks before the administration of dextran sulfate sodium (DSS). The supplementation of FOS or synbiotic could significantly ameliorate the body weight loss and colon histological damage in DSS-induced acute colitis mice. The altered composition of gut microbiota in acute colitis mice was reversed by FOS or Synbiotic supplementation, with a characteristic of decreased abundance of Mucispirillum. Both FOS and synbiotic mitigated DSS-induced loss of mucus protein (MUC2) and epithelium tight junction proteins (ZO-1, Occluding, Claudin1) in colon mucosa. The expression of pro-inflammatory cytokines (IL-6 and TNF-α) was decreased by FOS or synbiotic treatment, while the expression of Tbx21 and IL-10 was increased. The results suggested that the modulation of gut microbiota by FOS or synbiotic supplementation could decrease the inflammation potential of colonized commensals, which prevented the impairment of the intestinal barrier and induced a regulation of immune response in DSS-induced acute colitis mice.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies.

          Inflammatory bowel disease is a global disease in the 21st century. We aimed to assess the changing incidence and prevalence of inflammatory bowel disease around the world.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The microbiome in inflammatory bowel disease: current status and the future ahead.

            Studies of the roles of microbial communities in the development of inflammatory bowel disease (IBD) have reached an important milestone. A decade of genome-wide association studies and other genetic analyses have linked IBD with loci that implicate an aberrant immune response to the intestinal microbiota. More recently, profiling studies of the intestinal microbiome have associated the pathogenesis of IBD with characteristic shifts in the composition of the intestinal microbiota, reinforcing the view that IBD results from altered interactions between intestinal microbes and the mucosal immune system. Enhanced technologies can increase our understanding of the interactions between the host and its resident microbiota and their respective roles in IBD from both a large-scale pathway view and at the metabolic level. We review important microbiome studies of patients with IBD and describe what we have learned about the mechanisms of intestinal microbiota dysfunction. We describe the recent progress in microbiome research from exploratory 16S-based studies, reporting associations of specific organisms with a disease, to more recent studies that have taken a more nuanced view, addressing the function of the microbiota by metagenomic and metabolomic methods. Finally, we propose study designs and methodologies for future investigations of the microbiome in patients with inflammatory gut and autoimmune diseases in general. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Mechanisms regulating intestinal barrier integrity and its pathological implications

              The gastrointestinal tract is a specialized organ in which dynamic interactions between host cells and the complex environment occur in addition to food digestion. Together with the chemical barrier of the mucosal layer and the cellular immune system, the epithelial cell layer performs a pivotal role as the first physical barrier against external factors and maintains a symbiotic relationship with commensal bacteria. The tight junction proteins, including occludin, claudins, and zonula occludens, are crucial for the maintenance of epithelial barrier integrity. To allow the transport of essential molecules and restrict harmful substances, the intracellular signaling transduction system and a number of extracellular stimuli such as cytokines, small GTPases, and post-translational modifications dynamically modulate the tight junction protein complexes. An imbalance in these regulations leads to compromised barrier integrity and is linked with pathological conditions. Despite the obscurity of the causal relationship, the loss of barrier integrity is considered to contribute to inflammatory bowel disease, obesity, and metabolic disorders. The elucidation of the role of diseases in barrier integrity and the underlying regulatory mechanisms have improved our understanding of the intestinal barrier to allow the development of novel and potent therapeutic approaches.
                Bookmark

                Author and article information

                Contributors
                Journal
                FFOUAI
                Food & Function
                Food Funct.
                Royal Society of Chemistry (RSC)
                2042-6496
                2042-650X
                October 19 2021
                2021
                : 12
                : 20
                : 9844-9854
                Affiliations
                [1 ]Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha 410013, China
                [2 ]School of Life Science, Hunan Normal University, Changsha 410018, China
                [3 ]Hunan Cancer Hospital, Changsha 410013, China
                [4 ]Shaoshan Changbaitong Biotechnology Co., Ltd., Shaoshan 411100, China
                [5 ]General Surgery Department, Second Xiangya Hospital, Central South University, Changsha 410011, China
                Article
                10.1039/D1FO01147B
                34664584
                d0b996a9-80cb-4693-a14d-7171834b2ff8
                © 2021

                http://creativecommons.org/licenses/by-nc/3.0/

                History

                Comments

                Comment on this article