0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Golden bile powder prevents drunkenness and alcohol-induced liver injury in mice via the gut microbiota and metabolic modulation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Drunkenness and alcoholic liver disease (ALD) are critical public health issues associated with significant morbidity and mortality due to chronic overconsumption of alcohol. Traditional remedies, such as bear bile powder, have been historically acclaimed for their hepatoprotective properties. This study assessed the efficacy of a biotransformed bear bile powder known as golden bile powder (GBP) in alleviating alcohol-induced drunkenness and ALD.

          Methods

          A murine model was engineered to simulate alcohol drunkenness and acute hepatic injury through the administration of a 50% ethanol solution. Intervention with GBP and its effects on alcohol-related symptoms were scrutinized, by employing an integrative approach that encompasses serum metabolomics, network medicine, and gut microbiota profiling to elucidate the protective mechanisms of GBP.

          Results

          GBP administration significantly delayed the onset of drunkenness and decreased the duration of ethanol-induced inebriation in mice. Enhanced liver cell recovery was indicated by increased hepatic aldehyde dehydrogenase levels and superoxide dismutase activity, along with significant decreases in the serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, triglyceride, and total cholesterol levels ( P < 0.05). These biochemical alterations suggest diminished hepatic damage and enhanced lipid homeostasis. Microbiota analysis via 16S rDNA sequencing revealed significant changes in gut microbial diversity and composition following alcohol exposure, and these changes were effectively reversed by GBP treatment. Metabolomic analyses demonstrated that GBP normalized the alcohol-induced perturbations in phospholipids, fatty acids, and bile acids. Correlation assessments linked distinct microbial genera to serum bile acid profiles, indicating that the protective efficacy of GBP may be attributable to modulatory effects on metabolism and the gut microbiota composition. Network medicine insights suggest the prominence of two active agents in GBP as critical for addressing drunkenness and ALD.

          Conclusion

          GBP is a potent intervention for alcohol-induced pathology and offers hepatoprotective benefits, at least in part, through the modulation of the gut microbiota and related metabolic cascades.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s13020-024-00912-2.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          DrugBank 5.0: a major update to the DrugBank database for 2018

          Abstract DrugBank (www.drugbank.ca) is a web-enabled database containing comprehensive molecular information about drugs, their mechanisms, their interactions and their targets. First described in 2006, DrugBank has continued to evolve over the past 12 years in response to marked improvements to web standards and changing needs for drug research and development. This year’s update, DrugBank 5.0, represents the most significant upgrade to the database in more than 10 years. In many cases, existing data content has grown by 100% or more over the last update. For instance, the total number of investigational drugs in the database has grown by almost 300%, the number of drug-drug interactions has grown by nearly 600% and the number of SNP-associated drug effects has grown more than 3000%. Significant improvements have been made to the quantity, quality and consistency of drug indications, drug binding data as well as drug-drug and drug-food interactions. A great deal of brand new data have also been added to DrugBank 5.0. This includes information on the influence of hundreds of drugs on metabolite levels (pharmacometabolomics), gene expression levels (pharmacotranscriptomics) and protein expression levels (pharmacoprotoemics). New data have also been added on the status of hundreds of new drug clinical trials and existing drug repurposing trials. Many other important improvements in the content, interface and performance of the DrugBank website have been made and these should greatly enhance its ease of use, utility and potential applications in many areas of pharmacological research, pharmaceutical science and drug education.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Causal analysis approaches in Ingenuity Pathway Analysis

            Motivation: Prior biological knowledge greatly facilitates the meaningful interpretation of gene-expression data. Causal networks constructed from individual relationships curated from the literature are particularly suited for this task, since they create mechanistic hypotheses that explain the expression changes observed in datasets. Results: We present and discuss a suite of algorithms and tools for inferring and scoring regulator networks upstream of gene-expression data based on a large-scale causal network derived from the Ingenuity Knowledge Base. We extend the method to predict downstream effects on biological functions and diseases and demonstrate the validity of our approach by applying it to example datasets. Availability: The causal analytics tools ‘Upstream Regulator Analysis', ‘Mechanistic Networks', ‘Causal Network Analysis' and ‘Downstream Effects Analysis' are implemented and available within Ingenuity Pathway Analysis (IPA, http://www.ingenuity.com). Supplementary information: Supplementary material is available at Bioinformatics online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses.

              GeneCards, the human gene compendium, enables researchers to effectively navigate and inter-relate the wide universe of human genes, diseases, variants, proteins, cells, and biological pathways. Our recently launched Version 4 has a revamped infrastructure facilitating faster data updates, better-targeted data queries, and friendlier user experience. It also provides a stronger foundation for the GeneCards suite of companion databases and analysis tools. Improved data unification includes gene-disease links via MalaCards and merged biological pathways via PathCards, as well as drug information and proteome expression. VarElect, another suite member, is a phenotype prioritizer for next-generation sequencing, leveraging the GeneCards and MalaCards knowledgebase. It automatically infers direct and indirect scored associations between hundreds or even thousands of variant-containing genes and disease phenotype terms. VarElect's capabilities, either independently or within TGex, our comprehensive variant analysis pipeline, help prepare for the challenge of clinical projects that involve thousands of exome/genome NGS analyses. © 2016 by John Wiley & Sons, Inc.
                Bookmark

                Author and article information

                Contributors
                cgzum@hotmail.com
                Journal
                Chin Med
                Chin Med
                Chinese Medicine
                BioMed Central (London )
                1749-8546
                2 March 2024
                2 March 2024
                2024
                : 19
                : 39
                Affiliations
                [1 ]School of Bioengineering, Zhuhai Campus of Zunyi Medical University, ( https://ror.org/00g5b0g93) Zhuhai, 519000 Guangdong China
                [2 ]GRID grid.417409.f, ISNI 0000 0001 0240 6969, Department of Pediatrics, , The Fifth Affiliated Hospital of Zunyi Medical University, ; Zhuhai, 519000 Guangdong China
                [3 ]College of Medical Imaging Laboratory and Rehabilitation, Xiangnan University, ( https://ror.org/05by9mg64) Chenzhou, 423000 Hunan China
                [4 ]Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, ( https://ror.org/042pgcv68) Beijing, 100700 China
                Author information
                http://orcid.org/0000-0002-7639-2456
                Article
                912
                10.1186/s13020-024-00912-2
                10908100
                38431607
                d0ad8280-7403-4c02-821d-a8d72271e728
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 31 December 2023
                : 23 February 2024
                Funding
                Funded by: Guizhou Province Science and Technology Program
                Award ID: Qiankehe support [2023] General 071
                Award Recipient :
                Categories
                Research
                Custom metadata
                © International Society for Chinese Medicine and BioMed Central Ltd. 2024

                Complementary & Alternative medicine
                golden bile powder,drunkenness,alcoholic liver disease,network medicine,metabolomics,gut microbiota

                Comments

                Comment on this article