44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diagnostic Methods for Non-Falciparum Malaria

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Malaria is a serious public health problem that affects mostly the poorest countries in the world, killing more than 400,000 people per year, mainly children under 5 years old. Among the control and prevention strategies, the differential diagnosis of the Plasmodium–infecting species is an important factor for selecting a treatment and, consequently, for preventing the spread of the disease. One of the main difficulties for the detection of a specific Plasmodium sp is that most of the existing methods for malaria diagnosis focus on detecting P. falciparum. Thus, in many cases, the diagnostic methods neglect the other non-falciparum species and underestimate their prevalence and severity. Traditional methods for diagnosing malaria may present low specificity or sensitivity to non-falciparum spp. Therefore, there is high demand for new alternative methods able to differentiate Plasmodium species in a faster, cheaper and easier manner to execute. This review details the classical procedures and new perspectives of diagnostic methods for malaria non-falciparum differential detection and the possibilities of their application in different circumstances.

          Related collections

          Most cited references221

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Determinants of relapse periodicity in Plasmodium vivax malaria

          Plasmodium vivax is a major cause of febrile illness in endemic areas of Asia, Central and South America, and the horn of Africa. Plasmodium vivax infections are characterized by relapses of malaria arising from persistent liver stages of the parasite (hypnozoites) which can be prevented only by 8-aminoquinoline anti-malarials. Tropical P. vivax relapses at three week intervals if rapidly eliminated anti-malarials are given for treatment, whereas in temperate regions and parts of the sub-tropics P. vivax infections are characterized either by a long incubation or a long-latency period between illness and relapse - in both cases approximating 8-10 months. The epidemiology of the different relapse phenotypes has not been defined adequately despite obvious relevance to malaria control and elimination. The number of sporozoites inoculated by the anopheline mosquito is an important determinant of both the timing and the number of relapses. The intervals between relapses display a remarkable periodicity which has not been explained. Evidence is presented that the proportion of patients who have successive relapses is relatively constant and that the factor which activates hypnozoites and leads to regular interval relapse in vivax malaria is the systemic febrile illness itself. It is proposed that in endemic areas a large proportion of the population harbours latent hypnozoites which can be activated by a systemic illness such as vivax or falciparum malaria. This explains the high rates of vivax following falciparum malaria, the high proportion of heterologous genotypes in relapses, the higher rates of relapse in people living in endemic areas compared with artificial infection studies, and, by facilitating recombination between different genotypes, contributes to P. vivax genetic diversity particularly in low transmission settings. Long-latency P. vivax phenotypes may be more widespread and more prevalent than currently thought. These observations have important implications for the assessment of radical treatment efficacy and for malaria control and elimination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A genus- and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies.

            A nested polymerase chain reaction (PCR) assay that uses Plasmodium genus-specific primers for the initial PCR (nest 1) amplification and either genus- or species-specific primers for the nest 2 amplifications was tested on laboratory and field samples. With in vitro cultured Plasmodium falciparum-infected blood samples, it was capable of detecting six parasites/microl of blood using DNA prepared from 25-microl blood spots on filter paper. The assay was evaluated on fingerprick blood samples collected on filter paper from 129 individuals living in a malaria-endemic area in Malaysia. Malaria prevalence by genus-specific nested PCR was 35.6% (46 of 129) compared with 28.7% (37 of 129) by microscopy. The nested PCR detected seven more malaria samples than microscopy in the first round of microscopic examination, malaria in three microscopically negative samples, six double infections identified as single infections by microscopy and one triple infection identified as a double infection by microscopy. The nested PCR assay described is a sensitive technique for collecting accurate malaria epidemiologic data. When coupled with simple blood spot sampling, it is particularly useful for screening communities in remote regions of the world.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Infect. Microbiol.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                17 June 2021
                2021
                : 11
                : 681063
                Affiliations
                [1] 1 Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo , São Paulo, Brazil
                [2] 2 Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo , São Paulo, Brazil
                [3] 3 Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo , São Paulo, Brazil
                Author notes

                Edited by: Tania F. De Koning-Ward, Deakin University, Australia

                Reviewed by: Paul Bowyer, National Institute for Biological Standards and Control (NIBSC), United Kingdom; Richard Culleton, Ehime University, Japan

                *Correspondence: Alba Marina Gimenez, albamarinagimenez@ 123456gmail.com

                This article was submitted to Parasite and Host, a section of the journal Frontiers in Cellular and Infection Microbiology

                Article
                10.3389/fcimb.2021.681063
                8248680
                34222049
                d08d4a23-f157-4edd-9f34-747cb8ccefaa
                Copyright © 2021 Gimenez, Marques, Regiart and Bargieri

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 March 2021
                : 31 May 2021
                Page count
                Figures: 0, Tables: 2, Equations: 0, References: 223, Pages: 24, Words: 16147
                Funding
                Funded by: Instituto Serrapilheira 10.13039/501100013275
                Categories
                Cellular and Infection Microbiology
                Review

                Infectious disease & Microbiology
                non-falciparum malaria,plasmodium sp,poc (point of care),differential diagnosis,malaria control and elimination

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,000

                Cited by17

                Most referenced authors4,296