4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Distinct Immune Gene Programs Associated with Host Tumor Immunity, Neoadjuvant Chemotherapy, and Chemoimmunotherapy in Resectable NSCLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose:

          Our understanding of the immunopathology of resectable non–small cell lung cancer (NSCLC) is still limited. Here, we explore immune programs that inform of tumor immunity and response to neoadjuvant chemotherapy and chemoimmunotherapy in localized NSCLC.

          Experimental Design:

          Targeted immune gene sequencing using the HTG Precision Immuno-Oncology panel was performed in localized NSCLCs from three cohorts based on treatment: naïve (n = 190), neoadjuvant chemotherapy (n = 38), and neoadjuvant chemoimmunotherapy (n = 21). Tumor immune microenvironment (TIME) phenotypes were based on the location of CD8+ T cells (inflamed, cold, excluded), tumoral PD-L1 expression (<1% and ≥1%), and tumor-infiltrating lymphocytes (TIL). Immune programs and signatures were statistically analyzed on the basis of tumoral PD-L1 expression, immune phenotypes, and pathologic response and were cross-compared across the three cohorts.

          Results:

          PD-L1–positive tumors exhibited increased signature scores for various lymphoid and myeloid cell subsets (P < 0.05). TIME phenotypes exhibited disparate frequencies by stage, PD-L1 expression, and mutational burden. Inflamed and PD-L1+/TILs+ NSCLCs displayed overall significantly heightened levels of immune signatures, with the excluded group representing an intermediate state. A cytotoxic T-cell signature was associated with favorable survival in neoadjuvant chemotherapy–treated NSCLCs (P < 0.05). Pathologic response to chemoimmunotherapy was positively associated with higher expression of genes involved in immune activation, chemotaxis, as well as T and natural killer cells (P < 0.05 for all). Among the three cohorts, chemoimmunotherapy-treated NSCLCs exhibited the highest scores for various immune cell subsets including T effector and B cells (P < 0.05).

          Conclusions:

          Our findings highlight immune gene programs that may underlie host tumor immunity and response to neoadjuvant chemotherapy and chemoimmunotherapy in resectable NSCLC.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer Statistics, 2021

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2017) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2018) were collected by the National Center for Health Statistics. In 2021, 1,898,160 new cancer cases and 608,570 cancer deaths are projected to occur in the United States. After increasing for most of the 20th century, the cancer death rate has fallen continuously from its peak in 1991 through 2018, for a total decline of 31%, because of reductions in smoking and improvements in early detection and treatment. This translates to 3.2 million fewer cancer deaths than would have occurred if peak rates had persisted. Long-term declines in mortality for the 4 leading cancers have halted for prostate cancer and slowed for breast and colorectal cancers, but accelerated for lung cancer, which accounted for almost one-half of the total mortality decline from 2014 to 2018. The pace of the annual decline in lung cancer mortality doubled from 3.1% during 2009 through 2013 to 5.5% during 2014 through 2018 in men, from 1.8% to 4.4% in women, and from 2.4% to 5% overall. This trend coincides with steady declines in incidence (2.2%-2.3%) but rapid gains in survival specifically for nonsmall cell lung cancer (NSCLC). For example, NSCLC 2-year relative survival increased from 34% for persons diagnosed during 2009 through 2010 to 42% during 2015 through 2016, including absolute increases of 5% to 6% for every stage of diagnosis; survival for small cell lung cancer remained at 14% to 15%. Improved treatment accelerated progress against lung cancer and drove a record drop in overall cancer mortality, despite slowing momentum for other common cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Cancer statistics, 2022

            Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes. Incidence data (through 2018) were collected by the Surveillance, Epidemiology, and End Results program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2019) were collected by the National Center for Health Statistics. In 2022, 1,918,030 new cancer cases and 609,360 cancer deaths are projected to occur in the United States, including approximately 350 deaths per day from lung cancer, the leading cause of cancer death. Incidence during 2014 through 2018 continued a slow increase for female breast cancer (by 0.5% annually) and remained stable for prostate cancer, despite a 4% to 6% annual increase for advanced disease since 2011. Consequently, the proportion of prostate cancer diagnosed at a distant stage increased from 3.9% to 8.2% over the past decade. In contrast, lung cancer incidence continued to decline steeply for advanced disease while rates for localized-stage increased suddenly by 4.5% annually, contributing to gains both in the proportion of localized-stage diagnoses (from 17% in 2004 to 28% in 2018) and 3-year relative survival (from 21% to 31%). Mortality patterns reflect incidence trends, with declines accelerating for lung cancer, slowing for breast cancer, and stabilizing for prostate cancer. In summary, progress has stagnated for breast and prostate cancers but strengthened for lung cancer, coinciding with changes in medical practice related to cancer screening and/or treatment. More targeted cancer control interventions and investment in improved early detection and treatment would facilitate reductions in cancer mortality.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response

              Cancer treatment by immune checkpoint blockade (ICB) can bring long-lasting clinical benefits, but only a fraction of patients respond to treatment. To predict ICB response, we developed TIDE, a computational method to model two primary mechanisms of tumor immune evasion: the induction of T cell dysfunction in tumors with high infiltration of cytotoxic T lymphocytes (CTL) and the prevention of T cell infiltration in tumors with low CTL level. We identified signatures of T cell dysfunction from large tumor cohorts by testing how the expression of each gene in tumors interacts with the CTL infiltration level to influence patient survival. We also modeled factors that exclude T cell infiltration into tumors using expression signatures from immunosuppressive cells. Using this framework and pre-treatment RNA-Seq or NanoString tumor expression profiles, TIDE predicted the outcome of melanoma patients treated with first-line anti-PD1 or anti-CTLA4 more accurately than other biomarkers such as PD-L1 level and mutation load. TIDE also revealed new candidate ICB resistance regulators, such as SERPINB9 , demonstrating utility for immunotherapy research.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Clinical Cancer Research
                American Association for Cancer Research (AACR)
                1078-0432
                1557-3265
                June 01 2022
                April 01 2022
                June 01 2022
                April 01 2022
                : 28
                : 11
                : 2461-2473
                Article
                10.1158/1078-0432.CCR-21-3207
                35394499
                d07d0043-f896-4e32-9b17-7520de8a84f3
                © 2022
                History

                Comments

                Comment on this article