2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Transform method in three-dimensional fluorescence spectra for direct reflection of internal molecular properties in rapid water contaminant analysis

      , ,
      Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter.

          Excitation-emission matrix (EEM) fluorescence spectroscopy has been widely used to characterize dissolved organic matter (DOM) in water and soil. However, interpreting the > 10,000 wavelength-dependent fluorescence intensity data points represented in EEMs has posed a significant challenge. Fluorescence regional integration, a quantitative technique that integrates the volume beneath an EEM, was developed to analyze EEMs. EEMs were delineated into five excitation-emission regions based on fluorescence of model compounds, DOM fractions, and marine waters or freshwaters. Volumetric integration under the EEM within each region, normalized to the projected excitation-emission area within that region and dissolved organic carbon concentration, resulted in a normalized region-specific EEM volume (phi(i,n)). Solid-state carbon nuclear magnetic resonance (13C NMR), Fourier transform infrared (FTIR) analysis, ultraviolet-visible absorption spectra, and EEMs were obtained for standard Suwannee River fulvic acid and 15 hydrophobic or hydrophilic acid, neutral, and base DOM fractions plus nonfractionated DOM from wastewater effluents and rivers in the southwestern United States. DOM fractions fluoresced in one or more EEM regions. The highest cumulative EEM volume (phi(T,n) = sigma phi(i,n)) was observed for hydrophobic neutral DOM fractions, followed by lower phi(T,n) values for hydrophobic acid, base, and hydrophilic acid DOM fractions, respectively. An extracted wastewater biomass DOM sample contained aromatic protein- and humic-like material and was characteristic of bacterial-soluble microbial products. Aromatic carbon and the presence of specific aromatic compounds (as indicated by solid-state 13C NMR and FTIR data) resulted in EEMs that aided in differentiating wastewater effluent DOM from drinking water DOM.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fluorescence as a potential monitoring tool for recycled water systems: a review.

              A rapid, highly sensitive and selective detector is urgently required to detect contamination events in recycled water systems - for example, cross-connection events in dual reticulation pipes that recycle advanced treated sewage effluent - as existing technologies, including total organic carbon and conductivity monitoring, cannot always provide the sensitivity required. Fluorescence spectroscopy has been suggested as a potential monitoring tool given its high sensitivity and selectivity. A review of recent literature demonstrates that by monitoring the fluorescence of dissolved organic matter (DOM), the ratios of humic-like (Peak C) and protein-like (Peak T) fluorescence peaks can be used to identify trace sewage contamination in river waters and estuaries, a situation analogous to contamination detection in recycled water systems. Additionally, strong correlations have been shown between Peak T and biochemical oxygen demand (BOD) in rivers, which is indicative of water impacted by microbial activity and therefore of sewage impacted systems. Hence, this review concludes that the sensitive detection of contamination events in recycled water systems may be achieved by monitoring Peak T and/or Peak C fluorescence. However, in such systems, effluent is treated to a high standard resulting in much lower DOM concentrations and the impact of these advanced treatment processes on Peaks T and C fluorescence is largely unknown and requires investigation. This review has highlighted that further work is also required to determine (a) the stability and distinctiveness of recycled water fluorescence in relation to the treatment processes utilised, (b) the impact of matrix effects, particularly the impact of oxidation, (c) calibration issues for online monitoring, and (d) the advanced data analytical techniques required, if any, to improve detection of contamination events.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
                Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
                Elsevier BV
                13861425
                April 2021
                April 2021
                : 250
                : 119376
                Article
                10.1016/j.saa.2020.119376
                d074937e-d030-4c8f-8ca6-062d1dca9c61
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article