0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ultrasound-based nomogram to predict the recurrence in papillary thyroid carcinoma using machine learning

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and aims

          The recurrence of papillary thyroid carcinoma (PTC) is not unusual and associated with risk of death. This study is aimed to construct a nomogram that combines clinicopathological characteristics and ultrasound radiomics signatures to predict the recurrence in PTC.

          Methods

          A total of 554 patients with PTC who underwent ultrasound imaging before total thyroidectomy were included. Among them, 79 experienced at least one recurrence. Then 388 were divided into the training cohort and 166 into the validation cohort. The radiomics features were extracted from the region of interest (ROI) we manually drew on the tumor image. The feature selection was conducted using Cox regression and least absolute shrinkage and selection operator (LASSO) analysis. And multivariate Cox regression analysis was used to build the combined nomogram using radiomics signatures and significant clinicopathological characteristics. The efficiency of the nomogram was evaluated by receiver operating characteristic (ROC) curves, calibration curves and decision curve analysis (DCA). Kaplan-Meier analysis was used to analyze the recurrence-free survival (RFS) in different radiomics scores (Rad-scores) and risk scores.

          Results

          The combined nomogram demonstrated the best performance and achieved an area under the curve (AUC) of 0.851 (95% CI: 0.788 to 0.913) in comparison to that of the radiomics signature and the clinical model in the training cohort at 3 years. In the validation cohort, the combined nomogram (AUC = 0.885, 95% CI: 0.805 to 0.930) also performed better. The calibration curves and DCA verified the clinical usefulness of combined nomogram. And the Kaplan-Meier analysis showed that in the training cohort, the cumulative RFS in patients with higher Rad-score was significantly lower than that in patients with lower Rad-score (92.0% vs. 71.9%, log rank P < 0.001), and the cumulative RFS in patients with higher risk score was significantly lower than that in patients with lower risk score (97.5% vs. 73.5%, log rank P < 0.001). In the validation cohort, patients with a higher Rad-score and a higher risk score also had a significantly lower RFS.

          Conclusion

          We proposed a nomogram combining clinicopathological variables and ultrasound radiomics signatures with excellent performance for recurrence prediction in PTC patients.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          The meaning and use of the area under a receiver operating characteristic (ROC) curve.

          A representation and interpretation of the area under a receiver operating characteristic (ROC) curve obtained by the "rating" method, or by mathematical predictions based on patient characteristics, is presented. It is shown that in such a setting the area represents the probability that a randomly chosen diseased subject is (correctly) rated or ranked with greater suspicion than a randomly chosen non-diseased subject. Moreover, this probability of a correct ranking is the same quantity that is estimated by the already well-studied nonparametric Wilcoxon statistic. These two relationships are exploited to (a) provide rapid closed-form expressions for the approximate magnitude of the sampling variability, i.e., standard error that one uses to accompany the area under a smoothed ROC curve, (b) guide in determining the size of the sample required to provide a sufficiently reliable estimate of this area, and (c) determine how large sample sizes should be to ensure that one can statistically detect differences in the accuracy of diagnostic techniques.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer.

            Thyroid nodules are a common clinical problem, and differentiated thyroid cancer is becoming increasingly prevalent. Since the American Thyroid Association's (ATA's) guidelines for the management of these disorders were revised in 2009, significant scientific advances have occurred in the field. The aim of these guidelines is to inform clinicians, patients, researchers, and health policy makers on published evidence relating to the diagnosis and management of thyroid nodules and differentiated thyroid cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Machine Learning in Medicine.

              Rahul Deo (2015)
              Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games - tasks that would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in health care. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades, and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus, part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome.
                Bookmark

                Author and article information

                Contributors
                cuixinwu@live.cn
                1028zhouqin@126.com
                Journal
                BMC Cancer
                BMC Cancer
                BMC Cancer
                BioMed Central (London )
                1471-2407
                7 July 2024
                7 July 2024
                2024
                : 24
                : 810
                Affiliations
                [1 ]GRID grid.33199.31, ISNI 0000 0004 0368 7223, Department of Ultrasound, The Central Hospital of Wuhan, , Tongji Medical College, Huazhong University of Science and Technology, ; Wuhan, 430014 China
                [2 ]GRID grid.33199.31, ISNI 0000 0004 0368 7223, Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, , Huazhong University of Science and Technology, ; Wuhan, 430014 China
                Article
                12546
                10.1186/s12885-024-12546-6
                11229345
                38972977
                d06f7964-8674-4094-9da1-cc2862eb9792
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 31 October 2023
                : 20 June 2024
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 82071953
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2024

                Oncology & Radiotherapy
                papillary thyroid carcinoma,recurrence,radiomics,nomogram,ultrasound
                Oncology & Radiotherapy
                papillary thyroid carcinoma, recurrence, radiomics, nomogram, ultrasound

                Comments

                Comment on this article