Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exploring Azithromycin’s Neuroprotective Role in Traumatic Brain Injury: Insights into Cognitive and Motor Recovery and Neuroinflammatory Modulation

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Traumatic brain injury (TBI) is a leading cause of mortality worldwide and often results in substantial cognitive, motor, and psychological impairments, triggering oxidative stress, neuroinflammation, and neurodegeneration. This study examined the neuroprotective effects of azithromycin (AZI) in TBI. Methods: TBI was induced in rats using the weight-drop method. Subsequently, rats received a daily intraperitoneal (I.P.) dose of AZI (150 mg/kg) for 28 days. Behavioral tests (Morris water maze, rotarod, and open field tests) were performed to assess cognitive and motor functions. Neurochemical analyses included oxidative stress markers (GSH, SOD, MDA, catalase), inflammatory cytokines (TNF-α, IL-1β), apoptotic markers (caspase-3, Bax, Bcl-2), mitochondrial complexes (complex I, II, III, IV, and V), and the transforming growth factor- beta (TGF-β) as a neurofilament marker. Histological evaluations focused on neuronal integrity in the cortex, hippocampus, and striatum. Results: Treatment with AZI significantly facilitated motor and cognitive function recovery in TBI-affected rats. At the molecular level, AZI effectively reduced oxidative stress markers, ameliorated neuroinflammation by decreasing TNF-α, IL-1β, and neuronal apoptosis, and differentially modulated mitochondrial complexes. Histological assessments revealed enhanced neuronal integrity and fewer pathological changes in AZI-treated rats compared to untreated TBI controls. Conclusions: AZI was shown to interfere with several pathways involved in TBI’s pathophysiology. While preclinical results are promising, further studies are necessary to establish the long-term safety and efficacy of AZI in a clinical setting. This research supports the potential re-purposing of AZI as a novel treatment strategy for TBI and related neurodegenerative disorders.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges.

          Malondialdehyde (MDA), 4-hydroxy-nonenal (HNE) and the F2-isoprostane 15(S)-8-iso-prostaglandin F2α (15(S)-8-iso-PGF2α) are the best investigated products of lipid peroxidation. MDA, HNE and 15(S)-8-iso-PGF2α are produced from polyunsaturated fatty acids (PUFAs) both by chemical reactions and by reactions catalyzed by enzymes. 15(S)-8-iso-PGF2α and other F2-isoprostanes are derived exclusively from arachidonic acid (AA). The number of PUFAs that may contribute to MDA and HNE is much higher. MDA is the prototype of the so called thiobarbituric acid reactive substances (TBARS). MDA, HNE and 15(S)-8-iso-PGF2α are the most frequently measured biomarkers of oxidative stress, namely of lipid peroxidation. In many diseases, higher concentrations of MDA, HNE and 15(S)-8-iso-PGF2α are measured in biological samples as compared to health. Therefore, elevated oxidative stress is generally regarded as a pathological condition. Decreasing the concentration of biomarkers of oxidative stress by changing life style, by nutritional intake of antioxidants or by means of drugs is generally believed to be beneficial to health. Reliable assessment of oxidative stress by measuring MDA, HNE and 15(S)-8-iso-PGF2α in biological fluids is highly challenging for two important reasons: Because of the duality of oxidative stress, i.e., its origin from chemical and enzymatic reactions, and because of pre-analytical and analytical issues. This article focuses on these key issues. It reviews reported analytical methods and their principles for the quantitative measurement of MDA, HNE and 15(S)-8-iso-PGF2α in biological samples including plasma and urine, and critically discusses their biological and biomedical outcome which is rarely crystal clear and free of artefacts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The novel object recognition memory: neurobiology, test procedure, and its modifications

            Animal models of memory have been considered as the subject of many scientific publications at least since the beginning of the twentieth century. In humans, memory is often accessed through spoken or written language, while in animals, cognitive functions must be accessed through different kind of behaviors in many specific, experimental models of memory and learning. Among them, the novel object recognition test can be evaluated by the differences in the exploration time of novel and familiar objects. Its application is not limited to a field of research and enables that various issues can be studied, such as the memory and learning, the preference for novelty, the influence of different brain regions in the process of recognition, and even the study of different drugs and their effects. This paper describes the novel object recognition paradigms in animals, as a valuable measure of cognition. The purpose of this work was to review the neurobiology and methodological modifications of the test commonly used in behavioral pharmacology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Use of the Open Field Maze to Measure Locomotor and Anxiety-like Behavior in Mice

              Animal models have proven to be invaluable to researchers trying to answer questions regarding the mechanisms of behavior. The Open Field Maze is one of the most commonly used platforms to measure behaviors in animal models. It is a fast and relatively easy test that provides a variety of behavioral information ranging from general ambulatory ability to data regarding the emotionality of the subject animal. As it relates to rodent models, the procedure allows the study of different strains of mice or rats both laboratory bred and wild-captured. The technique also readily lends itself to the investigation of different pharmacological compounds for anxiolytic or anxiogenic effects. Here, a protocol for use of the open field maze to describe mouse behaviors is detailed and a simple analysis of general locomotor ability and anxiety-related emotional behaviors between two strains of C57BL/6 mice is performed. Briefly, using the described protocol we show Wild Type mice exhibited significantly less anxiety related behaviors than did age-matched Knock Out mice while both strains exhibited similar ambulatory ability.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                PHARH2
                Pharmaceuticals
                Pharmaceuticals
                MDPI AG
                1424-8247
                January 2025
                January 16 2025
                : 18
                : 1
                : 115
                Article
                10.3390/ph18010115
                d06e4f4d-eb0b-472f-a3ff-35afbbdc20a7
                © 2025

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article