57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Heparan Sulfate: A Ubiquitous Glycosaminoglycan with Multiple Roles in Immunity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heparan sulfate (HS) is a highly acidic linear polysaccharide with a very variable structure. It is ubiquitously expressed on cell surfaces and in the extracellular matrix and basement membrane of mammalian tissues. Synthesized attached to various core proteins to form HS-proteoglycans, HS is capable of interacting with various polypeptides and exerting diverse functions. In fact, a bioinformatics analysis of mammalian proteins that express a heparin/HS-binding motif and are associated with the immune system identified 235 candidate proteins, the majority having an intracellular location. This simple analysis suggests that HS may, in fact, interact with many more components of the immune system than previously realized. Numerous studies have also directly demonstrated that HS plays multiple prominent functional roles in the immune system that are briefly reviewed in this article. In particular, the molecule has been shown to regulate leukocyte development, leukocyte migration, immune activation, and inflammatory processes.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Heparan sulphate proteoglycans fine-tune mammalian physiology.

          Heparan sulphate proteoglycans reside on the plasma membrane of all animal cells studied so far and are a major component of extracellular matrices. Studies of model organisms and human diseases have demonstrated their importance in development and normal physiology. A recurrent theme is the electrostatic interaction of the heparan sulphate chains with protein ligands, which affects metabolism, transport, information transfer, support and regulation in all organ systems. The importance of these interactions is exemplified by phenotypic studies of mice and humans bearing mutations in the core proteins or the biosynthetic enzymes responsible for assembling the heparan sulphate chains.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Order out of chaos: assembly of ligand binding sites in heparan sulfate.

            Virtually every cell type in metazoan organisms produces heparan sulfate. These complex polysaccharides provide docking sites for numerous protein ligands and receptors involved in diverse biological processes, including growth control, signal transduction, cell adhesion, hemostasis, and lipid metabolism. The binding sites consist of relatively small tracts of variably sulfated glucosamine and uronic acid residues in specific arrangements. Their formation occurs in a tissue-specific fashion, generated by the action of a large family of enzymes involved in nucleotide sugar metabolism, polymer formation (glycosyltransferases), and chain processing (sulfotransferases and an epimerase). New insights into the specificity and organization of the biosynthetic apparatus have emerged from genetic studies of cultured cells, nematodes, fruit flies, zebrafish, rodents, and humans. This review covers recent developments in the field and provides a resource for investigators interested in the incredible diversity and specificity of this process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interstitial dendritic cell guidance by haptotactic chemokine gradients.

              Directional guidance of cells via gradients of chemokines is considered crucial for embryonic development, cancer dissemination, and immune responses. Nevertheless, the concept still lacks direct experimental confirmation in vivo. Here, we identify endogenous gradients of the chemokine CCL21 within mouse skin and show that they guide dendritic cells toward lymphatic vessels. Quantitative imaging reveals depots of CCL21 within lymphatic endothelial cells and steeply decaying gradients within the perilymphatic interstitium. These gradients match the migratory patterns of the dendritic cells, which directionally approach vessels from a distance of up to 90-micrometers. Interstitial CCL21 is immobilized to heparan sulfates, and its experimental delocalization or swamping the endogenous gradients abolishes directed migration. These findings functionally establish the concept of haptotaxis, directed migration along immobilized gradients, in tissues.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                18 December 2013
                2013
                : 4
                : 470
                Affiliations
                [1] 1Cancer and Vascular Biology Group, Department of Immunology, The John Curtin School of Medical Research, Australian National University , Canberra, ACT, Australia
                Author notes

                Edited by: Deirdre Coombe, Curtin University, Australia

                Reviewed by: Fulvio D’Acquisto, Queen Mary University of London, UK; Ralph D. Sanderson, University of Alabama at Birmingham, USA

                *Correspondence: Christopher R. Parish, Cancer and Vascular Biology Group, Department of Immunology, The John Curtin School of Medical Research, Australian National University, Building 131, Garran Road, Canberra, ACT 2601, Australia e-mail: christopher.parish@ 123456anu.edu.au

                This article was submitted to Inflammation, a section of the journal Frontiers in Immunology.

                Article
                10.3389/fimmu.2013.00470
                3866581
                24391644
                d05dc12e-8fa7-4183-92e6-f6d1839c2766
                Copyright © 2013 Simon Davis and Parish.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 October 2013
                : 05 December 2013
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 84, Pages: 7, Words: 6448
                Categories
                Immunology
                Mini Review

                Immunology
                glycosaminoglycan,heparanase,hematopoiesis,homing,inflammation,heparan sulfate
                Immunology
                glycosaminoglycan, heparanase, hematopoiesis, homing, inflammation, heparan sulfate

                Comments

                Comment on this article