The characteristic features of two types of short-term light adaptations of the photosynthetic apparatus of the cyanobacterium Synechocystis sp. PCC 6803, state transition and blue-green light-induced fluorescence quenching, were compared in wild-type and cytochrome b559 and PsbJ mutant cells with mutations on and near the QC site in photosystem II (PSII). All mutant cells grew photoautotrophically and assembled stable PSII. Thermoluminescence emission experiments showed a decrease in the stability of the S3QB(-)/S2QB(-) charge pairs in the A16FJ, S28Aβ, and V32Fβ mutant cells. When dark-adapted wild-type and mutant cells were illuminated by medium-intensity blue light, the increase in the PSII fluorescence yield (indicating a transition to state 1) was more prominent in mutant than wild-type cells. Strong blue-light conditions induced a quenching of fluorescence corresponding to nonphotochemical fluorescence quenching (NPQ). The extension of NPQ decreased significantly in the mutants, and the kinetics appeared to be affected. When similar measures were repeated on an orange carotenoid protein (OCP)-deficient background, little or no quenching was observed, which confirms that the decrease in fluorescence under strong blue light corresponded to the OCP-dependent NPQ. Immunoblot results showed that the attenuated effect of blue light-induced NPQ in mutant cells was not due to a lack of OCP. Photosynthetic growth and biomass production were greater for A16FJ, S28Aβ, and V32Fβ mutant cells than for wild-type cells under normal growth conditions. Our results suggest that mutations of cytochrome b559 and PsbJ on and near the QC site of PSII may modulate the short-term light response in cyanobacteria.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.