5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gonadal Sex Differentiation: Supporting Versus Steroidogenic Cell Lineage Specification in Mammals and Birds

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gonads of vertebrate embryos are unique among organs because they have a developmental choice; ovary or testis formation. Given the importance of proper gonad formation for sexual development and reproduction, considerable research has been conducted over the years to elucidate the genetic and cellular mechanisms of gonad formation and sexual differentiation. While the molecular trigger for gonadal sex differentiation into ovary of testis can vary among vertebrates, from egg temperature to sex-chromosome linked master genes, the downstream molecular pathways are largely conserved. The cell biology of gonadal formation and differentiation has long thought to also be conserved. However, recent discoveries point to divergent mechanisms of gonad formation, at least among birds and mammals. In this mini-review, we provide an overview of cell lineage allocation during gonadal sex differentiation in the mouse model, focusing on the key supporting and steroidogenic cells and drawing on recent insights provided by single cell RNA-sequencing. We compare this data with emerging information in the chicken model. We highlight surprising differences in cell lineage specification between species and identify gaps in our current understanding of the cell biology underlying gonadogenesis.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          DMY is a Y-specific DM-domain gene required for male development in the medaka fish.

          Although the sex-determining gene Sry has been identified in mammals, no comparable genes have been found in non-mammalian vertebrates. Here, we used recombinant breakpoint analysis to restrict the sex-determining region in medaka fish (Oryzias latipes) to a 530-kilobase (kb) stretch of the Y chromosome. Deletion analysis of the Y chromosome of a congenic XY female further shortened the region to 250 kb. Shotgun sequencing of this region predicted 27 genes. Three of these genes were expressed during sexual differentiation. However, only the DM-related PG17 was Y specific; we thus named it DMY. Two naturally occurring mutations establish DMY's critical role in male development. The first heritable mutant--a single insertion in exon 3 and the subsequent truncation of DMY--resulted in all XY female offspring. Similarly, the second XY mutant female showed reduced DMY expression with a high proportion of XY female offspring. During normal development, DMY is expressed only in somatic cells of XY gonads. These findings strongly suggest that the sex-specific DMY is required for testicular development and is a prime candidate for the medaka sex-determining gene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer.

            The mammalian Y chromosome acts as a dominant male determinant as a result of the action of a single gene, Sry, whose role in sex determination is to initiate testis rather than ovary development from early bipotential gonads. It does so by triggering the differentiation of Sertoli cells from supporting cell precursors, which would otherwise give follicle cells. The related autosomal gene Sox9 is also known from loss-of-function mutations in mice and humans to be essential for Sertoli cell differentiation; moreover, its abnormal expression in an XX gonad can lead to male development in the absence of Sry. These genetic data, together with the finding that Sox9 is upregulated in Sertoli cell precursors just after SRY expression begins, has led to the proposal that Sox9 could be directly regulated by SRY. However, the mechanism by which SRY action might affect Sox9 expression was not understood. Here we show that SRY binds to multiple elements within a Sox9 gonad-specific enhancer in mice, and that it does so along with steroidogenic factor 1 (SF1, encoded by the gene Nr5a1 (Sf1)), an orphan nuclear receptor. Mutation, co-transfection and sex-reversal studies all point to a feedforward, self-reinforcing pathway in which SF1 and SRY cooperatively upregulate Sox9 and then, together with SF1, SOX9 also binds to the enhancer to help maintain its own expression after that of SRY has ceased. Our results open up the field, permitting further characterization of the molecular mechanisms regulating sex determination and how they have evolved, as well as how they fail in cases of sex reversal.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The avian Z-linked gene DMRT1 is required for male sex determination in the chicken.

              Sex in birds is chromosomally based, as in mammals, but the sex chromosomes are different and the mechanism of avian sex determination has been a long-standing mystery. In the chicken and all other birds, the homogametic sex is male (ZZ) and the heterogametic sex is female (ZW). Two hypotheses have been proposed for the mechanism of avian sex determination. The W (female) chromosome may carry a dominant-acting ovary determinant. Alternatively, the dosage of a Z-linked gene may mediate sex determination, two doses being required for male development (ZZ). A strong candidate avian sex-determinant under the dosage hypothesis is the conserved Z-linked gene, DMRT1 (doublesex and mab-3-related transcription factor 1). Here we used RNA interference (RNAi) to knock down DMRT1 in early chicken embryos. Reduction of DMRT1 protein expression in ovo leads to feminization of the embryonic gonads in genetically male (ZZ) embryos. Affected males show partial sex reversal, characterized by feminization of the gonads. The feminized left gonad shows female-like histology, disorganized testis cords and a decline in the testicular marker, SOX9. The ovarian marker, aromatase, is ectopically activated. The feminized right gonad shows a more variable loss of DMRT1 and ectopic aromatase activation, suggesting differential sensitivity to DMRT1 between left and right gonads. Germ cells also show a female pattern of distribution in the feminized male gonads. These results indicate that DMRT1 is required for testis determination in the chicken. Our data support the Z dosage hypothesis for avian sex determination.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                18 December 2020
                2020
                : 8
                : 616387
                Affiliations
                Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University , Clayton, VIC, Australia
                Author notes

                Edited by: David Ellard Keith Ferrier, University of St Andrews, United Kingdom

                Reviewed by: Humphrey Yao, National Institute of Environmental Health Sciences (NIEHS), United States; Tony DeFalco, Cincinnati Children's Hospital Medical Center, United States

                *Correspondence: Craig A. Smith craig.smith@ 123456monash.edu

                This article was submitted to Evolutionary Developmental Biology, a section of the journal Frontiers in Cell and Developmental Biology

                †ORCID: Martin A. Estermann orcid.org/0000-0002-8623-272

                Article
                10.3389/fcell.2020.616387
                7775416
                33392204
                d017d384-5ba3-4b18-b386-03660348bf86
                Copyright © 2020 Estermann, Major and Smith.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 October 2020
                : 07 December 2020
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 108, Pages: 10, Words: 8124
                Funding
                Funded by: Centre of Excellence for Coral Reef Studies, Australian Research Council 10.13039/100014402
                Categories
                Cell and Developmental Biology
                Mini Review

                sex determination,testis,ovary,single cell rna seq,chicken embryo,gonad,gonadal differentiation

                Comments

                Comment on this article