17
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tumor-induced VEGF-C overexpression in retroperitoneal lymph nodes in VX2 carcinoma-bearing rabbits

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To establish the retroperitoneal lymph node (RLN) metastasis model of cervical carcinoma in rabbits and evaluate the relationship of vascular endothelial growth factor-C (VEGF-C) expression and the lymph node status.

          Methods

          Forty-eight rabbits were injected with VX2 cells or RPMI solution at muscular mucosae of the myometrium 0.5 cm away from the cervix. Animals were treated with or without cis-diamminedichloroplatinum(II) (cisplatin: DDP) and sacrificed on days 15, 21, and 27 post-VX2 or RPMI injections. Tumor mass and RLNs were examined histopathologically. Quantitative real-time PCR was used to examine the changes in VEGF-C mRNA expression. Levels of VEGF-C protein expression in tissues were determined using immunohistochemistry staining.

          Results

          Development of VX2 cervical carcinoma and the RLNs metastasis was confirmed with pathological examination. Significantly increased tumor volume was observed on days 15, 21, and 27 postinjection ( P<0.05). The enlargement of RLNs was found on day 21. Expression of VEGF-C was significantly upregulated in peripheral white blood cells, tumor mass, and RLNs in an association with cancer progression. DDP resulted in a suppression of VEGF-C expression, whereas the influences on tumor mass and lymphatic metastasis were insignificant.

          Conclusion

          Elevated VEGF-C expressions in peripheral white blood cells and RLNs are associated with tumor progression and lymphatic metastasis. DDP treatment inhibits VEGF-C expression and fails to protect against metastatic cervical cancer.

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Improved survival with bevacizumab in advanced cervical cancer.

          Vascular endothelial growth factor (VEGF) promotes angiogenesis, a mediator of disease progression in cervical cancer. Bevacizumab, a humanized anti-VEGF monoclonal antibody, has single-agent activity in previously treated, recurrent disease. Most patients in whom recurrent cervical cancer develops have previously received cisplatin with radiation therapy, which reduces the effectiveness of cisplatin at the time of recurrence. We evaluated the effectiveness of bevacizumab and nonplatinum combination chemotherapy in patients with recurrent, persistent, or metastatic cervical cancer. Using a 2-by-2 factorial design, we randomly assigned 452 patients to chemotherapy with or without bevacizumab at a dose of 15 mg per kilogram of body weight. Chemotherapy consisted of cisplatin at a dose of 50 mg per square meter of body-surface area, plus paclitaxel at a dose of 135 or 175 mg per square meter or topotecan at a dose of 0.75 mg per square meter on days 1 to 3, plus paclitaxel at a dose of 175 mg per square meter on day 1. Cycles were repeated every 21 days until disease progression, the development of unacceptable toxic effects, or a complete response was documented. The primary end point was overall survival; a reduction of 30% in the hazard ratio for death was considered clinically important. Groups were well balanced with respect to age, histologic findings, performance status, previous use or nonuse of a radiosensitizing platinum agent, and disease status. Topotecan-paclitaxel was not superior to cisplatin-paclitaxel (hazard ratio for death, 1.20). With the data for the two chemotherapy regimens combined, the addition of bevacizumab to chemotherapy was associated with increased overall survival (17.0 months vs. 13.3 months; hazard ratio for death, 0.71; 98% confidence interval, 0.54 to 0.95; P=0.004 in a one-sided test) and higher response rates (48% vs. 36%, P=0.008). Bevacizumab, as compared with chemotherapy alone, was associated with an increased incidence of hypertension of grade 2 or higher (25% vs. 2%), thromboembolic events of grade 3 or higher (8% vs. 1%), and gastrointestinal fistulas of grade 3 or higher (3% vs. 0%). The addition of bevacizumab to combination chemotherapy in patients with recurrent, persistent, or metastatic cervical cancer was associated with an improvement of 3.7 months in median overall survival. (Funded by the National Cancer Institute; GOG 240 ClinicalTrials.gov number, NCT00803062.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cisplatin and platinum drugs at the molecular level. (Review).

            Over twenty years of intensive work toward improvement of cisplatin, and with hundreds of platinum drugs tested, has resulted in the introduction of the widely used carboplatin and of oxaliplatin used only for a very narrow spectrum of cancers. A number of interesting platinum compounds including the orally administered platinum drug JM216, nedaplatin, the sterically hindered platinum(II) complex ZD0473, the trinuclear platinum complex BBR3464, and the liposomal forms Lipoplatin and SPI-77 are under clinical evaluation. This review summarizes the molecular mechanisms of platinum compounds for DNA damage, DNA repair and induction of apoptosis via activation or modulation of signaling pathways and explores the basis of platinum resistance. Cisplatin, carboplatin, oxaliplatin and most other platinum compounds induce damage to tumors via induction of apoptosis; this is mediated by activation of signal transduction leading to the death receptor mechanisms as well as mitochondrial pathways. Apoptosis is responsible for the characteristic nephrotoxicity, ototoxicity and most other toxicities of the drugs. The major limitation in the clinical applications of cisplatin has been the development of cisplatin resistance by tumors. Mechanisms explaining cisplatin resistance include the reduction in cisplatin accumulation inside cancer cells because of barriers across the cell membrane, the faster repair of cisplatin adducts, the modulation of apoptotic pathways in various cells, the upregulation in transcription factors, the loss of p53 and other protein functions and a higher concentration of glutathione and metallothioneins in some type of tumors. A number of experimental strategies to overcome cisplatin resistance are at the preclinical or clinical level such as introduction of the bax gene, inhibition of the JNK pathway, introduction of a functional p53 gene, treatment of tumors with aldose reductase inhibitors and others. Particularly important are combinations of platinum drug treatments with other drugs, radiation and the emerging gene therapy regimens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The VEGF pathway in cancer and disease: responses, resistance, and the path forward.

              Antiangiogenesis was proposed as a novel target for the treatment of cancer 40 years ago. Since the original hypothesis put forward by Judah Folkman in 1971, factors that mediate angiogenesis, their cellular targets, many of the pathways they signal, and inhibitors of the cytokines and receptors have been identified. Vascular endothelial growth factor (VEGF) is the most prominent among the angiogenic cytokines and is believed to play a central role in the process of neovascularization, both in cancer as well as other inflammatory diseases. This article reviews the biology of VEGF and its receptors, the use of anti-VEGF approaches in clinical disease, the toxicity of these therapies, and the resistance mechanisms that have limited the activity of these agents when used as monotherapy.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2015
                05 November 2015
                : 9
                : 5949-5956
                Affiliations
                [1 ]Department of Gynecology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
                [2 ]Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
                Author notes
                Correspondence: Ji-Hong Liu, Department of Gynecology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, People’s Republic of China, Tel +86 20 8734 3102, Fax +86 20 8734 3014, Email liujih@ 123456mail.sysu.edu.cn
                [*]

                These authors contributed equally to this work

                Article
                dddt-9-5949
                10.2147/DDDT.S89810
                4639523
                cff68b38-fcf9-4d8c-8330-348c8db65eab
                © 2015 Huang et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                vegf-c,retroperitoneal lymph nodes,vx2,cisplatin,lymphatic metastasis,peripheral blood

                Comments

                Comment on this article