13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Human memory Helios- FOXP3+ regulatory T cells (Tregs) encompass induced Tregs that express Aiolos and respond to IL-1β by downregulating their suppressor functions.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          FOXP3(+) regulatory T cells (Tregs) are critical regulators of self-tolerance and immune homeostasis. In mice and humans, two subsets of FOXP3(+) Tregs have been defined based on their differential expression of Helios, a transcription factor of the Ikaros family. Whereas the origin, specificity, and differential function of the two subsets are as yet a source of controversy, their characterization thus far has been limited by the absence of surface markers to distinguish them. In this article, we show that human memory Helios(+) and Helios(-) Tregs are phenotypically distinct and can be separated ex vivo based on their differential expression of IL-1RI, which is restricted to Helios(-) Tregs, in combination with CCR7. The two populations isolated using this strategy are distinct with respect to the expression of other Ikaros family members. Namely, whereas Eos, which has been reported to mediate FOXP3-dependent gene silencing, is expressed in Helios(+) Tregs, Aiolos, which is involved in the differentiation of TH17 and induced Tregs, is instead expressed in Helios(-) Tregs. In addition, whereas both subsets are suppressive ex vivo, Helios(-) Tregs display increased suppressive capacity in comparison to Helios(+) Tregs, but respond to IL-1β by downregulating their suppressive activity. Together, these data support the concept that human Helios(-) memory Tregs encompass induced Tregs that can readily respond to changes in the environment by modulating their suppressive capacity.

          Related collections

          Author and article information

          Journal
          J. Immunol.
          Journal of immunology (Baltimore, Md. : 1950)
          1550-6606
          0022-1767
          Nov 1 2013
          : 191
          : 9
          Affiliations
          [1 ] INSERM, Unité 1102, Equipe Labellisée Ligue Contre le Cancer, Institut de Cancérologie de l'Ouest, 44800 Nantes-Saint Herblain, France.
          Article
          jimmunol.1301378
          10.4049/jimmunol.1301378
          24068664
          cfe1f2f9-4289-4cc8-b661-47dd9eb10b6d
          History

          Comments

          Comment on this article