3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anthropogenic Volatile Organic Compound (AVOC) Autoxidation as a Source of Highly Oxygenated Organic Molecules (HOM)

      review-article
      The Journal of Physical Chemistry. a
      American Chemical Society

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gas-phase hydrocarbon autoxidation is a rapid pathway for the production of in situ aerosol precursor compounds. It is a highway to molecular growth and lowering of vapor pressure, and it produces hydrogen-bonding functional groups that allow a molecule to bind into a substrate. It is the crucial process in the formation and growth of atmospheric secondary organic aerosol (SOA). Recently, the rapid gas-phase autoxidation of several volatile organic compounds (VOC) has been shown to yield highly oxygenated organic molecules (HOM). Most of the details on HOM formation have been obtained from biogenic monoterpenes and their surrogates, with cyclic structures and double bonds both found to strongly facilitate HOM formation, especially in ozonolysis reactions. Similar structural features in common aromatic compounds have been observed to facilitate high HOM formation yields, despite the lack of appreciable O 3 reaction rates. Similarly, the recently observed autoxidation and subsequent HOM formation in the oxidation of saturated hydrocarbons cannot be initiated by O 3 and require different mechanistic steps for initiating and propagating the autoxidation sequence. This Perspective reflects on these recent findings in the context of the direct aerosol precursor formation in urban atmospheres.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015

          Summary Background Exposure to ambient air pollution increases morbidity and mortality, and is a leading contributor to global disease burden. We explored spatial and temporal trends in mortality and burden of disease attributable to ambient air pollution from 1990 to 2015 at global, regional, and country levels. Methods We estimated global population-weighted mean concentrations of particle mass with aerodynamic diameter less than 2·5 μm (PM2·5) and ozone at an approximate 11 km × 11 km resolution with satellite-based estimates, chemical transport models, and ground-level measurements. Using integrated exposure–response functions for each cause of death, we estimated the relative risk of mortality from ischaemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, lung cancer, and lower respiratory infections from epidemiological studies using non-linear exposure–response functions spanning the global range of exposure. Findings Ambient PM2·5 was the fifth-ranking mortality risk factor in 2015. Exposure to PM2·5 caused 4·2 million (95% uncertainty interval [UI] 3·7 million to 4·8 million) deaths and 103·1 million (90·8 million 115·1 million) disability-adjusted life-years (DALYs) in 2015, representing 7·6% of total global deaths and 4·2% of global DALYs, 59% of these in east and south Asia. Deaths attributable to ambient PM2·5 increased from 3·5 million (95% UI 3·0 million to 4·0 million) in 1990 to 4·2 million (3·7 million to 4·8 million) in 2015. Exposure to ozone caused an additional 254 000 (95% UI 97 000–422 000) deaths and a loss of 4·1 million (1·6 million to 6·8 million) DALYs from chronic obstructive pulmonary disease in 2015. Interpretation Ambient air pollution contributed substantially to the global burden of disease in 2015, which increased over the past 25 years, due to population ageing, changes in non-communicable disease rates, and increasing air pollution in low-income and middle-income countries. Modest reductions in burden will occur in the most polluted countries unless PM2·5 values are decreased substantially, but there is potential for substantial health benefits from exposure reduction. Funding Bill & Melinda Gates Foundation and Health Effects Institute.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The contribution of outdoor air pollution sources to premature mortality on a global scale.

            Assessment of the global burden of disease is based on epidemiological cohort studies that connect premature mortality to a wide range of causes, including the long-term health impacts of ozone and fine particulate matter with a diameter smaller than 2.5 micrometres (PM2.5). It has proved difficult to quantify premature mortality related to air pollution, notably in regions where air quality is not monitored, and also because the toxicity of particles from various sources may vary. Here we use a global atmospheric chemistry model to investigate the link between premature mortality and seven emission source categories in urban and rural environments. In accord with the global burden of disease for 2010 (ref. 5), we calculate that outdoor air pollution, mostly by PM2.5, leads to 3.3 (95 per cent confidence interval 1.61-4.81) million premature deaths per year worldwide, predominantly in Asia. We primarily assume that all particles are equally toxic, but also include a sensitivity study that accounts for differential toxicity. We find that emissions from residential energy use such as heating and cooking, prevalent in India and China, have the largest impact on premature mortality globally, being even more dominant if carbonaceous particles are assumed to be most toxic. Whereas in much of the USA and in a few other countries emissions from traffic and power generation are important, in eastern USA, Europe, Russia and East Asia agricultural emissions make the largest relative contribution to PM2.5, with the estimate of overall health impact depending on assumptions regarding particle toxicity. Model projections based on a business-as-usual emission scenario indicate that the contribution of outdoor air pollution to premature mortality could double by 2050.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Lancet Commission on pollution and health

                Bookmark

                Author and article information

                Journal
                J Phys Chem A
                J Phys Chem A
                jx
                jpcafh
                The Journal of Physical Chemistry. a
                American Chemical Society
                1089-5639
                1520-5215
                07 October 2021
                21 October 2021
                : 125
                : 41
                : 9027-9039
                Affiliations
                [1]Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University , 33720 Tampere, Finland
                Author notes
                Author information
                https://orcid.org/0000-0003-0463-8098
                Article
                10.1021/acs.jpca.1c06465
                8543447
                34617440
                cfdfea2e-8b00-4d91-9a93-bbff42424ff9
                © 2021 The Author. Published by American Chemical Society

                Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 20 July 2021
                : 01 September 2021
                Funding
                Funded by: H2020 European Research Council, doi 10.13039/100010663;
                Award ID: 101002728
                Funded by: Academy of Finland, doi 10.13039/501100002341;
                Award ID: 331207
                Categories
                Perspective
                Custom metadata
                jp1c06465
                jp1c06465

                Physical chemistry
                Physical chemistry

                Comments

                Comment on this article