31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      An SMN-dependent U12 splicing event essential for motor circuit function.

      Cell
      Animals, Animals, Genetically Modified, Disease Models, Animal, Drosophila Proteins, genetics, metabolism, Drosophila melanogaster, embryology, Humans, Membrane Proteins, Mice, Muscular Atrophy, Spinal, NIH 3T3 Cells, RNA, Small Nuclear, RNA-Binding Proteins, Zebrafish, Zebrafish Proteins

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spinal muscular atrophy (SMA) is a motor neuron disease caused by deficiency of the ubiquitous survival motor neuron (SMN) protein. To define the mechanisms of selective neuronal dysfunction in SMA, we investigated the role of SMN-dependent U12 splicing events in the regulation of motor circuit activity. We show that SMN deficiency perturbs splicing and decreases the expression of a subset of U12 intron-containing genes in mammalian cells and Drosophila larvae. Analysis of these SMN target genes identifies Stasimon as a protein required for motor circuit function. Restoration of Stasimon expression in the motor circuit corrects defects in neuromuscular junction transmission and muscle growth in Drosophila SMN mutants and aberrant motor neuron development in SMN-deficient zebrafish. These findings directly link defective splicing of critical neuronal genes induced by SMN deficiency to motor circuit dysfunction, establishing a molecular framework for the selective pathology of SMA. Copyright © 2012 Elsevier Inc. All rights reserved.

          Related collections

          Author and article information

          Comments

          Comment on this article