There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Research focusing on perceptual-cognitive skill in sport is abundant. However, the existing qualitative syntheses of this research lack the quantitative detail necessary to determine the magnitude of differences between groups of varying levels of skills, thereby limiting the theoretical and practical contribution of this body of literature. We present a meta-analytic review focusing on perceptual-cognitive skill in sport (N = 42 studies, 388 effect sizes) with the primary aim of quantifying expertise differences. Effects were calculated for a variety of dependent measures (i.e., response accuracy, response time, number of visual fixations, visual fixation duration, and quiet eye period) using point-biserial correlation. Results indicated that experts are better than nonexperts in picking up perceptual cues, as revealed by measures of response accuracy and response time. Systematic differences in visual search behaviors were also observed, with experts using fewer fixations of longer duration, including prolonged quiet eye periods, compared with non-experts. Several factors (e.g., sport type, research paradigm employed, and stimulus presentation modality) significantly moderated the relationship between level of expertise and perceptual-cognitive skill. Practical and theoretical implications are presented and suggestions for empirical work are provided.
The classic experiments of Yarbus over 50 years ago revealed that saccadic eye movements reflect cognitive processes. But it is only recently that three separate advances have greatly expanded our understanding of the intricate role of eye movements in cognitive function. The first is the demonstration of the pervasive role of the task in guiding where and when to fixate. The second has been the recognition of the role of internal reward in guiding eye and body movements, revealed especially in neurophysiological studies. The third important advance has been the theoretical developments in the fields of reinforcement learning and graphic simulation. All of these advances are proving crucial for understanding how behavioral programs control the selection of visual information.
In cricket, a batsman watches a fast bowler's ball come toward him at a high and unpredictable speed, bouncing off ground of uncertain hardness. Although he views the trajectory for little more than half a second, he can accurately judge where and when the ball will reach him. Batsmen's eye movements monitor the moment when the ball is released, make a predictive saccade to the place where they expect it to hit the ground, wait for it to bounce, and follow its trajectory for 100-200 ms after the bounce. We show how information provided by these fixations may allow precise prediction of the ball's timing and placement. Comparing players with different skill levels, we found that a short latency for the first saccade distinguished good from poor batsmen, and that a cricket player's eye movement strategy contributes to his skill in the game.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.